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A B S T R A C T

This work analyses basic wave properties originating from the interaction between waves and submerged
rigid vegetation. First of all, an analytical framework is presented that describes the propagation and dis-
sipation of waves over a rigid and submerged canopy, where the flow resistance is linearised. A nonlinear
closure term is introduced to ensure that the work done by the linearised flow resistance equals that of the
nonlinear flow resistance. The anisotropic flow resistance is found to have an impact on both the distribu-
tion of velocities and pressure inside the canopy and it partly explains the small decrease in flow velocities
inside the canopy, which was previously observed experimentally.
The following second order wave properties are derived: the wave energy density, the wave energy flux, the
vegetated group velocity of the wave energy density, the radiation stress components parallel and perpen-
dicular to the direction of wave propagation, the Eulerian and Lagrangian Stokes velocities and fluxes. The
additional Stokes drift due to the discontinuity in the velocity field at the top of the vegetation is derived;
the inclusion of this mass flux in the Lagrangian formulation of the Stokes drift is important for the ratio
between the Lagrangian and Eulerian Stokes drifts.
The relation between the wave energy density and the wave energy flux, i.e. the vegetated group velocity
of the wave energy density, is of practical importance for large scale wave modelling. The modification to
the vegetated group velocity relative to that derived from linear wave theory on non-dissipative waves is
described. It is seen that the corrections to linear wave theory are of Hc , where c is in the interval 1.5–2.0.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

This work was initially inspired by some previous research efforts.
First of all, Döbken (2015) showed with the help of a simple 1DV
numeric model (Uittenbogaard and Klopman, 2001; Dijkstra and Uit-
tenbogaard, 2010) that the vertical distribution of the Lagrangian
Stokes drift velocity in the presence of vegetation differs from that of
non-dissipative linear wave theory. The most prominent discrepancy
was the local maximum of the Stokes drift velocity adjacent to the
top of the canopy, which was caused by the local and large vertical
gradient in the horizontal velocity.

Furthermore, (Luhar et al., 2010; Van Rooijen et al., 2016) utilised
expressions for the Stokes drift in discussions of the mean flow
properties inside a canopy and for the numerical modelling of the
wave-induced mean setup inside the Generalised Lagrangian Mean
framework (Andrews and McIntyre, 1978). These works relied on a
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magnitude of the Stokes drift obtained from non-dissipative, linear
wave theory.

These combined research efforts led the author to ask the ques-
tions: (i) Is it possible to derive an analytical expression for the
Lagrangian Stokes drift that also has a local maximum around the top
of the canopy? (ii) Based on these results, can it be stated that the
Stokes drift is of the same magnitude with and without the presence
of vegetation? These questions will be answered in the following.

With an analytical solution at hand, it was straightforward to
extend the analysis to additional second order wave properties.
The derivation and application of an expression for the radiation
stress component in the direction of wave propagation was already
reported in Mendez et al. (1998), which is the reason that the focus
in the present work is given to the wave energy density, the wave
energy flux and the related vegetated group velocity.

Large scale numerical modelling of the interaction between
waves and vegetation is conducted over several decades (Dalrymple
et al., 1984; Mendez and Losada, 2004; Suzuki et al., 2011; Cao
et al., 2015; Van Rooijen et al., 2016). These works cover methods
such as the mild slope equations and the wave action equations with
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the common feature that the vegetated group velocity for the wave
energy density is set equal to the group velocity:

cg =
1
2

s

ka=1

(
1 +

2ka=1h
sinh 2ka=1h

)
(1)

where ka=1 is the wave number, s is the cyclic frequency and h
is the total water depth. The relationship between ka=1 and s is
given through the linear dispersion relation for a water depth of h
(see Eq. (20) below). a is defined below.

Gu and Wang (1991) saw that the general wave number over a
permeable sea bed with isotropic resistance differs from ka=1. Con-
sequently, it is natural to ask the following: Since the wave number
is a function of the resistance properties of vegetation or a perme-
able sea bed, will the transport of the wave energy density still be
conducted with the group velocity cg? This leads to related ques-
tions concerning the influence of the vegetation on the wave energy
density and the wave energy flux. These questions will be addressed
in the following.

It is noted that analytical solutions to wave propagation over per-
meable layers and vegetation were presented previously (Liu and
Dalrymple, 1984; Gu and Wang, 1991; Méndez et al., 1999, to name
some), but except for the brief outline in Mendez et al. (1998),
the second order (wave-averaged) wave properties do not seem to
have been given any attention. The same mathematical approach
was applied in the works mentioned above for both permeable bed
and vegetated fields. It means that the present work is not exclu-
sively limited to vegetated fields, but is also relevant for submerged,
permeable breakwaters or permeable natural reefs.

The outline of the present work is as follows. In Section 2 the
mathematical framework is presented and the handling of the dissi-
pation due to an anisotropic resistance term is described. A simple
validation against experimental data is presented in Section 2.5. In
Section 4 the vertical variation of velocities and pressure is discussed
along with an example of the phase lags between the horizontal
and vertical velocity components. In Section 5 expressions for the
wave energy density, wave energy flux and vegetated group velocity
are derived and quantified as functions of wave and canopy prop-
erties. The radiation stress components along and perpendicular to
the direction of wave propagation are presented in Section 6. The
horizontal Stokes drift is evaluated in both Eulerian and Lagrangian
frameworks in Section 7 and the vertical Stokes velocity at the free
surface is utilised to link the Eulerian and Lagrangian expressions.
The paper is finalised with a discussion and a conclusion.

2. Mathematical description

The local behaviour of a non-breaking wave field in a canopy con-
sisting of rigid, submerged vegetation is described in this section.
The term local means that effects of the finite length of the canopy
will not be covered here. A finite length was included in the work by
Méndez et al. (1999), and their solution resulted in an expression for
the degree of reflection due to the presence of the canopy (though
not explicitly analysed). This came with a considerable increase in
the complexity of the mathematical description, since evanescence
modes were required to match the solution at the ends of the canopy.
Consequently, the effects of reflected waves and evanescence modes
are omitted in this work. The omission of the evanescence modes are
acceptable, since they decay exponentially away from the ends of the
canopy (Méndez et al., 1999). The reflected wave is omitted in this
work, because the reflection coefficient is assumed small and only
second order properties in the wave height are analysed in this work.

Furthermore, boundary layer effects on top of the vegetation field
and at the bottom are assumed to be negligible in terms of the wave
dissipation. Consequently, these boundary layers will be excluded in
this mathematical treatment. Findings by Liu and Dalrymple (1984)

Fig. 1. Sketch of the physical problem of wave propagation and wave attenuation over
rigid, submerged vegetation.

for percolation in permeable beds showed that the dissipation due to
boundary layers is small in comparison to the dissipation by the per-
meable medium. This finding is also assumed to hold for dissipation
in a submerged canopy.

Rigid vegetation is not the only type of vegetation, but inclusion
of flexibility would greatly increase the complexity of the mathemat-
ical derivations. Furthermore, the concept of effective length of the
vegetation as discussed by Luhar and Nepf (2016) points in the direc-
tion of an engineering treatment of the vegetation as stiff elements.
The validity of the assumptions will be discussed in Section 8.1.

In the following a vector notation will be used for a matter of
compactness of the equations, while a scalar form is used in the sub-
sequent sections. Therefore, the two-dimensional velocity vector is
defined as u = [u; w] and the two-dimensional Cartesian coordinate
as x = [x; z]. Lowercase, bold symbols refer to vector properties and
uppercase, bold symbols refer to tensors properties of rank 2.

2.1. Definition of the mathematical framework

A sketch of the physical system is presented in Fig. 1. The math-
ematical derivation will loosely follow the ideas in Gu and Wang
(1991), Méndez et al. (1999). Only submerged vegetation will be
analysed in this work, consequently 0 < a.

The wave motion is described by the velocity potential V above
the canopy, where the velocity field is assumed irrotational and
incompressible, i.e. the solution to V is given by the Laplace
equation:

∇2V = 0 for − ah ≤ z ≤ 0 (2)

The velocity field above the canopy is given as u = ∇V.
The flow inside the canopy is described by the linearised momen-

tum equation based on filter velocities (see e.g. Jensen et al., 2014):
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The second approximation is a linearisation of the nonlinear resis-
tance term as suggested by Sollitt and Cross (1972). The evaluation of
the real-valued friction tensor F is described in Section 2.3. In Eq. (3),
u is the Eulerian filter velocity vector, n is the porosity, t is time, q is
the uniform density of water, p is the pressure in excess of the hydro-
static, Cm is the added mass tensor and B is the resistance tensor for
the quadratic flow resistance. Assuming that u is periodic in time
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