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a b s t r a c t

This paper presents an algorithm for determining an optimal loading of elements in series–parallel

systems. The optimal loading is aimed at achieving the greatest possible expected system performance

subject to repair resource constraint. The model takes into account the dependence of elements’ failure

rates on their load. The optimization algorithm uses a universal generating function technique for

evaluating the expected system performance, and a genetic algorithm for determining the optimal load

distribution. An illustrative example of load distribution optimization is presented.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

A majority of engineering systems are designed to support
varying amounts of load. Examples include cargo trains, trucks,
conveyors, electric lines, computer processors, and telecommuni-
cation channels. In some cases, the load can also be measured in
terms of usage frequency or busy period. The load-carrying levels of
a system or an element can be discrete or continuous [1–3].
Examples of discrete load-carrying systems include power-gener-
ating units in a thermal power plant and discrete unit industrial
conveyors. Examples of continuous load-carrying systems include
coal conveyors, cargo trucks and trains, and variable feed cutting
tools. For practical purposes, we can consider all of them as discrete
load capacity systems. For example, it is appropriate to measure the
load on a coal conveyor in terms of integer values of tons per hour.

Many empirical studies of mechanical systems [4] and
computer systems [5] have proved that the workload strongly
affects the component failure rate. Therefore, it is important to
consider the load versus failure rate relationship while performing
system reliability evaluation and optimization. We describe these
models in Section 2.

In reliability engineering, we encounter two classes of
problems that consider the effects of load on component failures.

� Static load distribution problems: In static models, the load on a
given component is almost constant and does not vary with

time or other events. However, we have the control on
determining the optimal load on that component. An example
of this kind of problem is determining the optimal load on a
truck or optimal feed of a cutting tool [2,3].
� Dynamic load distribution problems: In these models, the load

on a given component may vary with time or other events such
as failure of other components. An example of this kind of
problem is a well-known load-sharing system where the total
load on a system is shared by remaining working components.
Applications of load-sharing systems include electric genera-
tors sharing an electrical load in a power plant, CPUs in a
multi-processor computer system, cables in a suspension
bridge, and valves or pumps in a hydraulic system [6].

Both the static and dynamic load distribution problems are
important. Although the dynamic load distribution approach has a
wide range of applications, the optimal dynamic load distribution
problem requires capturing the information on the system state
and computing the optimal parameters online. However, the static
load distribution problem requires less information and does not
require tracking the system state and other events. Hence, the
static load distribution problems are more practical and require
less record-keeping. In this paper, we considered the static load
distribution problem.

1.1. Problem description

We consider a series–parallel system with non-identical
elements. Each element is capable of supporting discrete loads.
The failure rate of an element depends on the load it supports.
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In general, the failure rate increases with the load. Hence, the
increase of load on an element increases the number of failures
and the associated repair cost (in the long run, the number of
failures per unit time is equivalent to the number of repairs).

On the one hand, the increase in load increases the element’s
performance in working states. On the other hand, the increase in
load increases the overall downtime of the element, which
reduces its average performance over a long time. Therefore, the
expected element performance can be non-monotonic function of
its load. One may want to find the optimal load on each element of
the system that provides the maximal expected performance.

As long as all elements in the system are independent, the
optimal load of each element can be found independently of other
elements in the system. Hence, the problem can be simplified to
the optimal load distribution of a single element. However, it is
true only if there are no system-level constraints associated with
the optimization problem, which is hardly the case. In most
practical cases, we may have several system-level constraints
such as:

� Limited repair resources.
� Allowed total number of failures (or total repair time).
� Upper and lower limits on the entire system performance.
� Allowed system unavailability.

Depending on the context, the term ‘‘repair resources’’ is used for
different things. In some literature, it is used to describe the
available number of repair personnel. It can also be used for
the equipment needed for repairing. Similarly, it can be used for
the budget allocated for repairing or the allowed average cost of
repairs per unit time. In general, the cost of a repair is
proportional to the repair time. If cost of repair per unit is the
same for all components, then the ‘‘average repair cost per unit
time’’ constraint is equivalent to the constraint on the ‘‘average
value of total repair time of all components per unit time’’. For
simplicity, we refer to this as total repair time constraint. The
proposed method can handle all these constraints. However, in
order to simplify the problem description, we considered only
allowed total repair time constraint.

In this paper all components are considered to be repairable
and the repair of a component starts immediately after its failure.
This inherently assumes that there are sufficient repair personnel.
This assumption is valid for most systems because the cost of
downtime and cost of repair are very high as compared to the cost
of repair personnel. Hence, in most cases, reasonably sufficient

repairmen are available. If waiting time related to unlimited
repairmen is really significant, then it is easy to hire additional
repair personnel depending on the number of failed components
in the system.

When load on each component is fixed, it is assumed that the
failure times in each component occur as per exponential
distribution with constant rate. We assume that the failure and
repair times of a component are independent and repairs are
perfect and do not change the failure pattern of the components.
As a result, the failure and repair process of each component
follows an alternative renewal process. Within each failure–repair
cycle, the failure time follows exponential distribution with a
constant rate parameter; we represent the failure distribution
using its failure rate (hazard rate). The term ‘‘failure rate’’ used in
this paper is not equivalent to the failure intensity function.
Strictly speaking, it is numerically equivalent to the conditional
failure intensity. It should also be noted that the alternative
renewal process is a special type of semi-Markov process;
therefore, it is appropriate to represent the state transition times
in terms of failure and repair distributions defined over local
times (time spent in each state) as opposed to the global times
used in the non-homogeneous Poisson processes.

To illustrate the suggested methodology, consider a power
plant multi-stage coal feeding system consisting of several
conveyors with different load-carrying capacities and failure
rates. Any given loading of each conveyor determines its capacity
in working state and its failure rate. Having these parameters and
the system structure, one can determine the entire system’s
expected carrying capacity and the expected total repair time
(or number of repairs) of the conveyors using the algorithm
presented below. Since the numerical algorithm obtains these two
indices for any arbitrary conveyor’s loading, it may be used in an
optimization procedure that seeks for the conveyor’s load
distribution that maximizes the coal feeding system’s expected
carrying capacity subject to constraints on the expected total
repair time (or cost). The numerical example that considers the
feeding system with nine conveyors is presented in Section 6.

2. Load–failure rate relationship models

In order to analyze the optimal load distribution systems, we
should consider the relationship between the load and the failure
behavior of a component. The accelerated life testing models play
an important role in determining the relationships between load
and failure rate. There is a huge amount of literature on the
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Nomenclature

RBD reliability block diagram
MSS multi-state system
u-function universal generating function
pmf probability mass function
Pr{e} probability of event e

E expected system performance
N number of system elements
T required repair resource
T* available repair resource
Gj random performance of system element j

gj set of possible realizations of Gj

gjh hth realization of Gj

pjh Pr{Gj ¼ gjh}
Lj load (performance) of two-state element j in its

working state

L vector of elements’ loads L ¼ {L1,y,LN}
mj repair rate of element j

lj failure rate (hazard rate) of element j

Aj availability of element j

V random system performance
vi ith realization of V

qi Pr{V ¼ vi}
f system structure function: V ¼ f(G1,y,Gn)
uj(z) u-function representing pmf of Gj

U(z) u-function representing pmf of V

�
j

composition operator over u-functions
j(Gi,Gj) function representing performance of pair of elements
w penalty function
o penalty value
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