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This study uses 21 years (1958–1978) significant wave height and associated peak periods off Azores in the North
Atlantic Ocean, extracted from 44 years HIPOCAS database. Empirical average conditional exceedances of peak pe-
riods are executed. Plausibility of judging the distribution of the peak periods by modelling average conditional ex-
ceedance of peak periods by Erlang, generalized Pareto and three-parameterWeibullmodels is investigated and we
also assessed certain peak period statistics predicted by the models. 50 year gamma peak period quantiles are rea-
sonably accurate when compared with 44 year peak period quantiles (HIPOCAS). Erlang and generalized Pareto es-
timate ofmean peak period are reasonable;whereas all the threemodels fairly evaluate the average of the one-third
thehighest peakperiods.Weibullmodel derivedparametric relation gauged the average of the one-tenth thehighest
peak periods. A general statistical formula is suggested for estimation of significant wave period. Average of one-
third the highest peak period estimates by the parametric relation derived from generalized Pareto distribution
using the general formula for significant wave period, provides reliably precise results. Significant wave period to
mean wave period observational ratio of 1.2 is appropriately interpreted for both computed and estimated ratios
of mean peak period of one-third the highest significant wave heights to mean peak periods.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The probability density function of wave periods has received less
attention in the literature than that of wave heights. This is because sig-
nificant wave height (Hs) is the most significant parameter influencing
the intensity of extreme loads in fixed structures like coastal structures
and fixed offshore structures. For floating structures Hs continues being
the most important variable, but in this case the average period of the
waves influences the dynamic amplification of the response and thus
has also an important influence on the wave induced loads.

So, while themostly static coastal and offshore structures require long
term and extreme distributions of significant wave height (e.g., Ferreira
and Guedes Soares, 2000; Guedes Soares and Scotto, 2001, 2004) floating
structures require bivariate distributions of significant wave heights (Hs)
and characteristic (mean or peak) periods (Bitner-Gregersen et al., 1998;
Ferreira and Guedes Soares, 2002; Haver, 1985). Significant wave height
(Hs) and associated peak period (Tp) are importantwaveparameters that
determine the characteristics of the wave energy spectrum, which is
used for assessing the response spectrum to be considered in long term
formulations (Guedes Soares and Moan, 1991).

Floating wave energy converters (Falcão, 2010) are normally in the
coastal zone in areas of low water depth and their dynamic response

depends on the sea states defined by significant wave height (Hs) and
associated peak period (Tp) (e.g., Silva et al., 2013). So, while their
survivability depends also on the extreme sea states mentioned before,
their operational performance depends mostly of the wave period. In
fact, a given wave energy converter will have a range of significant
wave heights in which it will perform, but its efficiency depends on
the response amplification factor, which is governed solely by the
mean wave period. Therefore, to study the efficiency of these devices,
having a probability distribution of characteristic wave periods is
essential.

Themarginal distributions of wave periods, even under the assump-
tion that waves are linear and have narrow band frequency spectrum
(Rodríguez et al., 2004) are difficult to determine probably because
often sea states have a certain percentage of cases with two wave
systems (Guedes Soares, 1984), inwhich case thedistributionof periods
will appear bimodal and will not fit the distribution appropriate to
single sea states. One approach to determining the distribution of
wave periods is to derive it as the marginal distribution of the joint
distribution of individual wave heights (H) and periods (T). By this
strategy, Longuet-Higgins (1975, 1983) obtained the marginal density
function of wave period:
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where c — spectral width parameter; T — mean wave period; t ¼ T
T
;

T — wave period random variable. Arhan et al. (1976) and Kwon
and Deguchi (1994) also provided joint distributions of wave heights
and periods. Nevertheless, the wave period distributions depend on
the shape of the wave spectrum. The theoretical marginal distribution
of wave periods given by Cavanié et al. (1976) is of the form:

f tð Þ ¼ α3β2t

t2−α2
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whereα ¼ 1
2 ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1−ε2p

Þ; β ¼ εffiffiffiffiffiffiffiffiffi
1−ε2p ; ε — spectral width parameter.

Subsequentmathematical treatments for estimation of certain wave
period statistics of interest from thesemodels are strenuous due to their
intricacies. Henceforth, restricted applications of these models persist
such as the fitting to observed wave period distribution.

Other joint distribution models of wave heights and periods are
provided by Lindgren and Rychlick (1982) and Tayfun (1993). The
marginal distribution of wave periods provided by Lindgren and
Rychlick is not based on the zero crossing definition of wave periods
and constrained by numerical integration and Tayfun's model is only
applicable for wave periods associated with waves larger than the
mean wave height.

A second and conventional procedure is to fit known probability
distributions taking into account the physical features of the wave
periods. Wist (2003) modelled successive wave periods with the
Nataf transformation using a two-parameter Weibull distribution
and a generalized gamma distribution, and the latter was in good
agreement with the data. Of the various probabilistic models consid-
ered for comparison with zero up-crossing wave periods in Gaussian
combined sea states, the distribution recommended byMyrhaug and
Slaattelid (1999), which is an amalgamation of two, two-parameter
Weibull functions represents adequately the observed distributions
of wave periods (Rodríguez et al., 2004). Anyway, no attempt
appeared to have been made to gauge other wave period statistics
from these models.

Muraleedharan et al. (2009) determined m (t); the empirical
average conditional exceedance of zero crossing wave periods t for
a shallow water site (Valiathura, southwest coast of India, depth of
recording 5.5 m) in the Arabian Sea for the month of January, 1981.
The long-term data of shallow water mean zero crossing wave
periods ðTzÞ off Valiathura, computed by CESS (1980–1984) for the
rough south west rainstorm seasons (May–October) were addition-
ally considered. The discrepancies among computed and estimated
(by m (t) derived from Erlang distribution) average conditional
exceedance of wave periods were insignificant according to the
RRMSerror criteria. The plausibility of obtaining the gamma (or Erlang)
as the distribution of wave periods T by modelling the function m
(t) has been investigated. Since m (t) resolves the distribution of T
uniquely, it is adequate to find the functional form of m (t) coherent
with the data. Thus modelling the wave periods can be accomplished
through the function m (t), provided sufficiently precise description
of the functional form ofm (t) is derived from the data. In support of
the above assertion, the gamma distribution was successfully fitted
to the zero crossing wave period distribution off Valiathura (CESS,
India), to the average wave period distribution of a cyclone sea state
(June, 2004) recorded by DS1 deep water buoy (15.5°N, 69.25°E) and
to data from the shallow water buoy SW3 (15.4°N, 73.8°E) off Goa in
the Arabian Sea.

This study also examines the prospects of extending these regional
aspects by modelling globally distributed daily maximum significant
wave height (Hs) and associated peak periods (Tp). The distribution of
peak period ismore crucial thanwave heights in assessing the efficiency
of wave energy converters. The paper utilises, the month wise grouped
21 years (1958–1978) everyday maximum significant wave height and

associated peak period distributions off Azores (Fig. 1, 0.25° × 0.25°
grid) in theNorth Atlantic Ocean (Pilar et al., 2008), whichwere extract-
ed from 44-years HIPOCAS database. Lucas et al. (2014) detailed about
the generation and validity of these data sets. Campos and Guedes
Soares (2012) also calibrated and validated the data set with the
NOAA\NCEP data sets ensuing that the two data sets are similar in the
area of study (20°–60°N, 50°W–04°E), the region that composes off-
shore Portugal. Outlier analyses (Wilks, 2006) are also performed to
identify and discard extreme outliers in the data.

There is sufficient substantiation that environmental parameters
are distributed with heavy tails (Ahmad et al., 1988; Ferreira and
Guedes Soares, 1999; Houghton, 1978; Landwehr et al., 1979; Rossi
et al., 1984). Hosking and Wallis (1997) have suggested that it is
astute to utilize an extensive variety of heavy tailed distributions or
a distribution with enough free parameters that it can replicate a
wide range of frequency distributions. The present study considers
the generalized Pareto (GP3) and 3-parameter Weibull distributions
along with Erlang (or gamma) distribution as candidates of long-term
marginal distributions of peak periods (Tp) and applies these models
to month-wise clustered joint distributions of daily maximum signifi-
cant wave heights and associated peak periods off Azores. The defense
for the gamma distribution as a possibility for wave period distribution
on certain basic assumptions is provided by Unnikrishnan Nair et al.
(2003). The method of L-moments (Hosking and Wallis, 1997) is used
to estimate the model parameters. L-moments are a recent develop-
ment in statistics and provide an elegant mathematical theory and
facilitate the estimation process. Hosking et al. (1985) and Hosking
and Wallis (1987) noted that with small and moderate samples the
method of L-moments is oftenmore efficient thanmaximum likelihood.
Furthermore, they demonstrated that the method of L-moments
yields computationally advantageous assessments of parameters and
quantiles.

Certain peak period statistics such asmean peak period ðTpÞ, average
of one-third the highest peak periods ðTpð13ÞÞ, 50 (Q50) and 100 (Q100)

year return peak periods are also estimated and compared with com-
puted values to emphasize the accuracy of the estimations.

Kitano et al. (2002) derived a formula for significant wave period
based on complex value integral of energy spectrum and depends on
the spectral shape asymmetry. This work also provides a new general
statistical formula for estimation of significant wave period (Ts) from
time series data. The parametric relation derived (based on general
statistical formula for Ts) from the generalized Pareto distribution
(GP3) estimated Tpð13Þ with reasonable accuracy. Empirical relationship

between mean period of one-third the highest wave heights TpðH1
3
Þ

and Tpð13Þ is well established. The empirical ratio Ts

T
of 1.2 (Kitano et al.,

2002) or 0.9–1.4 (Goda and Nagai, 1974; Goda, 2010) is fairly captured

by both computed and estimated
TpðH1

3
Þ

Tp
.

Landwehr et al. (1979), and McMahon and Srikanthan (1982) ex-
plored the influence of serial dependence on at-site frequency analysis
and observed that they caused irrelevant bias in quantile appraisals.
Hosking and Wallis (1997) reasoned that a small amount of serial
dependence in annual data series has little impact on the quality of
quantile estimates. They also considered that when the data are
generated from a physical process that can produce anomalies, then a
distribution that is a close fit to the current observed data will not
ensure the same to the future data. So, it is desirable to use a robust
approach based on a distribution that will yield acceptably precise
quantile approximations even when the true at-site frequency distribu-
tions differ from the fitted frequency distributions. The purpose of this
study is to evaluate the accuracy of the parametric relations, derived
from the proposed distribution functions obtained by the statistical
approach discussed in the following sections, to estimate various wave
period statistics.
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