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The evolution of beaches in response to the incident wave conditions has long attracted the attention of
researchers and engineers. A popularmathematicalmodel describing the change in the position of a single height
contour on the coastline assumes that the beach profile is stable and the plan shape evolves due to wave-driven
long-shore transport. Extensions of this model include more contours and allow for beach profile alteration
through cross-shore transport of sediment. Despite this advantage, models with multiple contours remain
relatively underused. In this paperwe examine the stability of this class ofmodel for the cases of one to three con-
tours. Unstablemodesmay exist when there ismore than one contour. These include shortwaveswhose growth
rate is strongly dependent uponwavenumber. For the case of three contours an additional longwave instability is
possible. A necessary, but not sufficient, condition for instability is found. It requires a reversal of transport direc-
tion amongst the contours. The existence of these instabilities provides a possible explanation for the difficulties
found in implementing computational multi-line models, particularly where structures alter the natural
longshore transport rates so they satisfy, locally, the condition for instability.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).

1. Introduction

The problem of beach stability, particularly with respect to shoreline
response to the construction of coastal defences, has long been a famil-
iar question in coastal research. Early work can be traced back to the
1950s,with continuing research since that time. Interest in this problem
stems from the observation of instabilities in the natural environment. It
is also germane to the problem of formulating numerical models that
describe the time evolution of the shoreline. Whilst it was common to
commission laboratory studies to test the performance of proposed
coastal structures the era of cheap computing has meant that computa-
tional modelling has become an important design tool that doesn't
suffer from the scaling problems inherent in modelling sediment
transport in laboratory models. However, computational modelling
has brought new challenges, particularly in view of the need to have
reassurance that results from a computer model are reliable, stable
and robust. One source of checks on the performance of a computer
model is analytical solutions. As a general rule such solutions are avail-
able only for simplified situations or a restricted range of conditions.
Nevertheless, analytical solutions remain one of the best forms of
basic computer model testing. Checking the performance of computer
models in more complex situations requires comparison against lab-
oratory or field experiments. Current design practice typically relies

on several if not all of the above approaches. In this paper we focus
on analytical methods and the characteristic behaviour of beach
models when some of the simplifications adopted for analytical solu-
tions are relaxed. Whilst this might at first appear to be an exercise
of solely academic interest the results have relevance for a class of
computational models known as line models. The simplest of these
models is the 1-line model, which describes the movement of a sin-
gle contour line in response to incoming waves and sources and/or
interruptions of sediment supply along the beach. This model has
a fairly restrictive assumption that the beach profile remains un-
changed. It was only natural that researchers wished to remove
this restriction, so models describing more contour lines were devel-
oped so as to account for changes in beach profile shape. Nevertheless,
these ‘better’models whichmight have been expected to provide more
realistic results, have not enteredmainstream use. One reason seems to
have been difficulties encountered in achieving solutions that converge.
One potential reason for this is numerical instability, in which small
fluctuations in the solution can grow rapidly, overwhelming the fea-
tures of engineering interest, and rendering the computed solutions
meaningless. In this paper we analyse the stability properties of the 1,
2 and 3 line models to investigate whether such instabilities might be
an inherent property of the systems of equations, thereby rendering
the computational approach rather problematic in certain situations.
In Section 2 the 1-line model, which is widely known in the coastal
engineering literature, is discussed briefly. In Sections 3 and 3.1 the sta-
bility of the governing equations to small perturbations in the beach
position is assessed. Conclusions from the assessment are presented in
Section 3.2.
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2. The 1-line model and beyond

Pelnard-Considère (1956) undertook laboratory experiments and
proposed a simplified analytical model to describe the long-shore sedi-
ment transport driven by waves. Assuming constant, uniform wave
conditions and that the angle between wave crests and the shoreline
contour is small, the equation for the position of the shoreline (or a
single depth contour), y(x, t), from a fixed datum line takes the form
of a linear diffusion equation with constant coefficient and has gained
the epithet of the ‘one-line equation’:

∂y
∂t ¼ K

∂2y
∂x2

: ð1Þ

In Eq. (1) y is the distance of the reference contour from a datum line
(usually taken to be the x-axis), t is time, and K is a diffusion coefficient
that represents the factors affecting the rate at which sediment is
transported along the shoreline, and may be written as 2Q0/D where D
is the height of the active profile andQ0 is a nominal sediment transport
rate that depends upon wave height and sediment characteristics. The
physical transport rate is equal to the product of Q0 and a function
of wave angle, determined empirically to be sin(2αb) where αb is the
angle between the breaking wave crests and the local shoreline contour
(US Army Corps of Engineers, 2002). Specifically,

K ¼ 2
D

κρH2
sbCgb

16 ρs−ρð Þ 1−psð Þ ð2Þ

where ps is the porosity of the beach material, ρs is the density of
the beach sediment (kg/m3), ρ is the density of seawater (kg/m3), Hsb

is the significant wave height at breaking (m), cgb is the wave group
velocity at breaking (m/s), and κ is a dimensionless coefficient which
is a function of the particle size and has a recommended value of
approximately 0.4 for sandy beaches.

Some of the first analytical solutions to this equation for cases
of coastal engineering interest were presented by Grijm (1960), under
the assumption of constant uniform waves. This assumption can be re-
laxed, but complicates the analysis considerably. Larson et al. (1997)
presented an equation for constant but non-uniform wave conditions
corresponding to Eq. (1), whilst Reeve (2006), Zacharioudaki and
Reeve (2008), Walton and Dean (2011) and Valsamidis et al. (2013)
have presented solutions for cases where wave conditions are uniform
but time varying. The development of analytical models not only an-
swers a pedagogical need but also broadens the range of conditions
for testing computational models.Whilst some of themethods required
to derive analytical solutions can appear difficult and arcane, the
solutions themselves have several attractive properties. First, they can
usually be evaluated in a straightforward and efficient manner. Second,
no time stepping is required as the solution simply needs to be evaluat-
ed at a selected time, rather than approached iteratively throughmulti-
ple time steps. Finally, analytical solutions do not suffer from numerical
stability in the same way that computational models can. The need
to make simplifying assumptions does restrict analytical methods and
for many practical applications numerical models are preferred, partic-
ularly as they can be linked to other models that can predict, for exam-
ple, nearshore wave transformation processes.

In practical applications, the 1-line model is solved using a time
marching numerical solution procedure to solve the continuity, sedi-
ment transport and wave angle equations simultaneously, commonly
relaxing the ‘small angle approximation’made to assist in deriving ana-
lytical solutions.Wang and LeMéhauté (1980) showed that the expres-
sion for sediment transport can, under the assumption of parallel depth
contours, be cast in terms of deepwater wave conditions. Instabilities
can occur for certain values of offshore wave angle, although the equa-
tion governing shoreline evolution no longer takes the form in Eq. (1).
This idea was used by Ashton et al. (2001) to develop a numerical

model that provided an explanation for the unusual coastal spit forma-
tions found in the Azov Sea, and by Falques (2003) in an analysis of the
method of estimating the diffusion coefficient.

The 1-line model has proved remarkably robust, and over the past
decade or so has been used extensively, being an element in current
design guidelines (eg. US Army Corps, 2002). The use of the 1-line
model in more complicated situations has driven the development
and expansion of a simple morphological equation (Eq. (1)) into com-
putational prediction suites. For example, suchmodelling suites include
elements of wave prediction, nearshorewave transformation,modifica-
tions to allow for wave diffraction, longshore variations in wave angle
and height, and variations in beach slope (eg Hanson and Kraus, 1989,
Dabees & Kamphuis, 1999).

One criticism of the 1-line formulation is that it is not able to deal
explicitly with cross-shore sediment transport and hence changes in
the cross-shore beach profile. Changes in beach slope and convexity
that arise from the construction of coastal defences require something
more than the 1-line model. Bakker (1969) proposed a 2-line theory
which predicted the simultaneous evolution of two distinct contour
lines and hence changes in beach slope. Perlin and Dean (1983) sub-
sequently presented the theory for an N-line model together with asso-
ciated numerical solution methods. With a few notable exceptions
(Dabees and Kamphuis, 2001; Hanson and Larson, 2001; Shibutani
et al., 2009), the N-line formulation has not found widespread applica-
tion. The reasons for this are not entirely clear, although there have
been some reports discussing the difficulty of obtaining consistent re-
sults in practical applications. For example, Hulsbergen et al. (1976)
performed laboratory experiments and found that the 2-line model
worked well for a long, straight beach with a simple pattern of long-
shore currents but was not as accurate for more complicated situations;
whilst Hanson and Larson (2001) commented upon instances of
numerical difficulties in certain applications.

3. The 2-line model

The stability of an equation, or system of equations, can be inves-
tigated by analysing the propensity of small perturbations to grow
or decay over time. Perturbations are typically taken to have a sinu-
soidal form. Seeking wave solutions to Eq. (1) of the form y(x,t) =
Yexp{i(kx − ωt)} leads to the requirement that ω = −iKk2, where
ω is the angular frequency of the perturbations, i is the imaginary
unit and k is the wave number of the perturbations in the position
of the shoreline contour. This requirement indicates that any wave
solutions will be damped over time. It is a matter of convention as
to over what ranges the wavenumber and frequency are allowed to
vary. Here, we take k as being non-negative whilst ω may take on
positive or negative values, depending uponwhich direction the per-
turbation propagates along the shoreline.

Following Bakker (1969), a 2-line model can be formulated on the
argument that the beach profile can be divided into two parts, a shallow
part that extends offshore to a depth D1 and a deeper part that extends
out to the depth of closure, written as D1 + D2 (see Fig. 1).

Again the concept of an equilibrium profile is used but in this case
it is defined by the position of two contours together with the position
of the depth of closure. In Fig. 1, y1 is the distance of a chosen contour
(typically the equilibrium sea level), from a fixed datum line landward
of the shoreline. This datum line is usually taken as the ‘x-axis’. A second
contour, a distance w from the x-axis at equilibrium, is denoted by y2.
When the profile is in equilibrium, both y1 and y2 are zero. When either
of the contours is not in their equilibrium position a cross-shore
sediment transport is inferred. The cross-shore transport of sediment
between the two contours must satisfy continuity and is assumed,
following Bakker (1969), to be in a sense that relaxes the beach
profile towards its equilibrium form. Hence, it may be written as qy =
Cy(y1 − y2) where Cy is a dimensional transport coefficient. It may be
noted that even though y1 is chosen to be the contour of the equilibrium
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