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A modified Boussinesq-type model is derived to account for the propagation of either regular or irregular waves
in two horizontal dimensions. An improvement of the dispersion and shoaling characteristics of themodel is ob-
tained by optimizing the coefficients of each term in themomentum equation, expanding in this way its applica-
bility in very deepwaters and thus overcoming a shortcoming ofmost models of the same type. The values of the
coefficients are obtained by an inversemethod in such a way as to satisfy exactly the dispersion relation in terms
of both first and second-order analyses matching in parallel the associated shoaling gradient. Furthermore a
physically more sound way to approach the evaluation of wave number in irregular wave fields is proposed. A
modification of the wave generator boundary condition is also introduced in order to correctly simulate the
phase celerity of each input wave component. The modified model is applied to simulate the propagation of
breaking and non-breaking, regular and irregular, long and short crested waves in both one and two horizontal
dimensions, in a variety of bottom profiles, such as of constant depth, mild slope, and in the presence of sub-
merged obstacles. The simulations are compared with experimental data and analytical results, indicating very
good agreement in most cases.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Wind waves are one of the most important driving factors in the
coastal environment. Understandingwave hydrodynamics and the pro-
cesses induced by them is important for designing marine structures
and for managing of the coastal zone. Numerous researchers have con-
tributed to the development of analytical theories and numerical
models aiming at simulating wave propagation and describing wave
transformation due to various phenomena such as wave shoaling, dif-
fraction, refraction, and breaking. Wave models based on the original
Boussinesq equation have proven to be quite accurate, especially
when applied to relatively shallow water regions (Peregrine, 1967).
Further developments, loosely named Boussinesq-type models, can in-
corporate highly nonlinear wave characteristics partially disregarding
the original Boussinesq assumptions and simulate fully dispersive prop-
erties. Nevertheless all of the above models normally lose some of their
efficiencywhen simulatingwave propagation in deepwaters. Thus each
of thesemodels has restrictions and specific applicability limits, e.g. kd≤ 1,
where d is water depth and kwave number. This is considered a serious
drawback since wind waves are normally generated and start their
travel in deep waters and such models cannot, therefore, cover

adequately the whole domain stretching from deep waters to the
shore. A further complication arises when dealing with real life sea
states, that are viewed as composed of a variety of individual waves
with different characteristics.

Various attempts have been made to extend and practically elimi-
nate water depth limitation, e.g. Madsen et al. (1991), Nwogu (1993),
Wei et al. (1995), Zou (1999), extending the water depth limit up to
kd≈ 3, i.e. to the deepwater boundary.Madsen and Schäffer (1998), re-
ferred to as MS98 hereafter, derived two models, in terms of depth av-
eraged velocity and in terms of particle velocity at an arbitrary
location along the vertical, achieving acceptable accuracy for depths
up to kd = 6. More recent efforts offered a wider depth range to
Boussinesq-type models, providing accurate linear dispersion and
shoaling characteristics for kd N 3. Madsen et al. (2002) presented a
model having as a starting point the exact solution to the Laplace equa-
tion, where they replaced the infinite series operators by finite series
approximations involving up to fifth-derivative order operators. By ma-
nipulating the finite series to incorporate Padé approximants the linear
and nonlinear characteristics became very accurate up to kd=40. A dif-
ferent approach was implemented by Li (2008). In that procedure a hy-
perbolic cosine function of the Stokes first-order solution was used as a
first approximation, instead of the velocity potential function at the bot-
tom, deriving a fully dispersivemodel. A new formulation of Boussinesq
model was introduced by Karambas and Memos (2009), referred to as
KM09 hereafter. This model offers significant advantages due to the
small number of terms involved in both mass and momentum
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conservation equations and simulates accurately the propagation of
fully dispersive water waves.

Despite all of this progress several problems remain concerning the
nonlinear wave characteristics, the irregular wave propagation and the
consequent complexity of the system of partial differential equations,
which in many models include a significant number of terms. Recently
a preliminary proposal was presented by Chondros and Memos
(2012), referred to as CM12 hereafter, to define new coefficients in
MS98 equations in order to improve its dispersion characteristics in
any depth. These coefficients, that govern the linear and nonlinear dis-
persion and appear in the momentum equation, were allowed to be
time and space dependent in contrast with all past studies of
Boussinesq-type models, where they were assumed constants. Hence
improvement in the wave dispersion and shoaling characteristics at
first and second-order analysis was achieved. This technique may also
be useful for direct application in other Boussinesq models as well. In

this paper the following three steps are taken to briefly present and
mainly to improve the CM12model. Firstly, the derivation of the coeffi-
cients that govern the linear shoaling characteristics of the model is re-
capitulated, secondly, a more physically based approach to handle the
evaluation of wave number k in irregular waves is proposed and finally
amodification inwave generator is performed in such away to simulate
accurately the linear dispersion of generatingwaves in anywater depth.
The following chapters present the derivation of continuity and
momentum equations following MS98, the calculation of the new set
of coefficients, the modification of the numerical wave generator to be
applicable to any water depth, and finally the calibration and verifica-
tion of the modified model by comparing its results with experimental
data and with mathematical theories. To this effect tests are used with
breaking and non-breaking, regular and irregular, long and short
crested waves propagating over a mild slope, over a reef trapezoidal
bar and over an elliptic shoal in both 1HD and 2HD configurations.

2. Theoretical formulation

2.1. Equations by Madsen and Schäffer (1998)

The continuity equation in a wave of two horizontal dimensions (x, y) is written as

∂ζ
∂t þ∇ dþ εζð ÞUð Þ ¼ 0 ð1Þ

where U is the depth averaged velocity, ζ is the surface elevation, and ε the nonlinearity parameter equal to H/d (where H is the local wave height).
Assuming a rather strong nonlinearity, i.e. ε = Ο (μ) with μ is the frequency dispersion parameter equal to d/L (where L is the local wavelength),
and considering a mildly sloping bottom where only the first derivatives of d are included, the momentum equation in two horizontal dimensions
is given, following MS98:

∂U
∂t þ∇ζ þ 1

2
ε∇ U2
� �

þ μ2 Λ II
20 þ εΛ II

21 þ ε2Λ II
22 þ ε3Λ II

23

� �
þ μ4 Λ II

40 þ εΛ II
41

� �
þ Ο μ6

; ε2μ4
� �

¼ 0
ð2Þ

where for the ΛII terms the reader is referred to the original paper MS98.
In order to improve the linear and nonlinear dispersion and the linear shoaling characteristics, MS98 introduced four free parameters (α1, β1, α2,

β2) and applied a three-step operational procedure on Eq. (2). They then obtained the following new alternative higher-ordermomentum equation:

∂U
∂t þ∇ζ þ 1

2
ε∇ U2
� �

þ μ2 Λ III
20 þ εΛ III

21 þ ε2Λ III
22 þ ε3Λ III

23

� �
þ μ4 Λ III

40 þ εΛ III
41

� �
þ Ο μ6

; ε2μ4
� �

¼ 0
ð3Þ

The ΛII terms are reproduced fromMS98 in the appendix for ease of reference.
The set (α1, β1) governs the dispersion relation,while the set (α2, β2) can be used to optimize the linear shoaling gradient. MS98 tried to optimize

the linear dispersion characteristics by selecting the set of (α1, β1) to converge close to the respective target result of Stokes linear wave:

ω2

k2d

 !Stokes

¼ tanh κð Þ
κ

ð4Þ

where κ = kd, k the wave number and ω is the angular frequency.
For values (α1, β1) = (1/9, 1/945) the accuracy of linear dispersion is seen to be excellent for kd up to 6, which is twice the traditional deep-water

limit. They also optimized the linear shoaling characteristics by selecting the set of (α2, β2) to converge to the corresponding target result of Stokes
linear wave theory. To do this they used the notion of linear shoaling gradient γ0 introduced previously by Madsen and Sørensen (1992) as another
important quantity able to measure the applicability of Boussinesq equations. This gradient is a function of the local κ and is defined by:

Ax

A
¼ − dx

d
γ0 ð5Þ

where A is the local wave amplitude and the subscript denotes partial derivative.
The Stokes result is then written as

γStokes
0 ¼ 2κ sinh 2κ þ 2κ2 1− cosh 2κð Þ

2κ þ sinh 2κð Þ2 ð6Þ

For values (α2, β2) = (0.146488, 0.00798359) the accuracy they achieved was excellent for kd up to 6 as with the previous set of coefficients.
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