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The distribution of variables in the water column controls the dispersion properties of non-hydrostatic models.
Because solving the Poisson equation is themost time consuming part of a non-hydrostaticmodel, it is highly de-
sirable to reduce the number of unknowns in the water column by placing them at optimal locations. The paper
presents the analytical dispersion relationship of a non-hydrostatic Euler model for water waves. The phase
speed of linear waves simulated by the semi-discretized Euler model can be expressed as a rational polynomial
function of the dimensionless water depth, kh, and the thicknesses of layers encompassing thewater column be-
come optimizable parameters in this function. The dispersion error is obtained by comparing this phase speed
against the exact solution based on the linear wave theory. It is shown that for a given dispersion error (e.g.
1%), the range of kh can be extended if the layer thicknesses are optimally selected. The optimal two- and
three-layer distributions for the aforementioned Euler model are provided. The Euler model with the optimized
layer distribution shows good linear dispersion properties up to kh≈ 9with two layers, and kh≈ 49.5with three
layers. The derived phase speedwas tested against both numerical and exact solutions of standingwaves for var-
ious cases. Excellent agreement was achieved. The model was also tested using the fifth-order Stokes theory for
nonlinear standingwaves. The phase speed of nonlinearwaves follows a similar trend of the derived phase speed
although it deviates proportionally with the increase of wave steepness ka0. Thus, the optimal layer distribution
can also be applied to nonlinear waves within a range of ka0 and kh. The optimization method is applicable to
other non-hydrostatic Euler models for water waves.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In physical oceanography, and coastal and ocean engineering, an
accurate and efficient prediction of surface waves is of paramount im-
portance. In the past several decadeswith the rapid advances in compu-
tational technology, substantial efforts have been devoted to developing
numerical models for simulating the propagation and evolution of
water waves from deep water to the shoreline.

A widely used type of models is based on depth-averaged equations,
such as Boussinesq-type models. The conventional Boussinesq models
(e.g. Peregrine 1967) have the drawback of weak dispersion and weak
nonlinearity, or a limited range of applicability. By introducing a refer-
ence velocity at an arbitrary vertical location as the velocity variable
and choosing the location to match the Padé [2, 2] expansion of the
exact linear dispersion relationship, Nwogu (1993) extended the appli-
cability of the model to kh≈ 3, here k is the wave number, and h is the

water depth. The dimensionless wave number kh serves as a dispersion
criterion.

Many efforts have been put in to enhance the deep-water accuracy of
the depth-integrated approach by developing high-order Boussinesq-
typemodels. By utilizing a quartic polynomial approximation for the ver-
tical profile of velocity field, Gobbi and Kirby (1999) developed a model
with excellent linear dispersion properties up to kh ≈ 6. The models of
Madsen and Schäffer (1998), andChenet al. (1998) also showedgood lin-
ear dispersive wave properties up to kh≈ 6. Madsen et al. (2002) further
improved the Boussinesq-typemodel andmade it applicable to extreme-
ly deep-water waves with kh≈ 40. Agnon et al. (1999) presented a new
procedure to achieve good nonlinear dispersion properties up to kh≈ 6.

Lynett and Liu (2004a and 2004b) introduced another approach to
improving the dispersion accuracy of Boussinesq-type models. Instead
of using a high-order approximation for the vertical profile of the flow
field, they used N independent quadratic polynomial approximations
for the velocity profiles. These polynomial approximations match at
the interfaces that divide the water column into N layers. Good disper-
sion accuracy up to kh ≈ 8 was achieved with an optimized two-layer
model. Chazel et al. (2009) combined the approach in Madsen et al.
(2002) and the approach in Lynett and Liu (2004a), and developed an
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efficient model with less complexity. This model exhibits good linear
and nonlinear dispersion properties to kh ≈ 10.

Another widely used type of models is based on the Navier–Stokes
equations (NSE) or the Euler equations of fluidmotion. Themomentum
equations are solved at every layer for this type ofmodels, thus the com-
putational cost is higher comparedwith the Boussinesq typemodels. To
capture the rapid changing free surface and to apply the pressure
boundary condition precisely on the free surface of the waves, Navier–
Stokes models involve the non-hydrostatic pressure on the top layer,
and solve this problem by methods of: (1) employing edged-based
grid systems (e.g. Lin and Li, 2002; Zijlema and Stelling, 2005, 2008;
Zijlema et al., 2011; Chen et al., 2011; Ma et al., 2012), (2) using the in-
tegration method (e.g. Yuan andWu, 2004), (3) implementing interpo-
lation approaches (e.g. Walters, 2005; Choi andWu, 2006; Young et al.,
2007), and (4) embedding Boussinesq-type like equation into the
Navier–Stokes model (e.g. Wu et al., 2010).

To improve themodel dispersion properties, non-uniform layers have
beenused. Finer vertical resolution is utilizednear the free surface for cap-
turing the rapid velocity and pressure variation while coarse resolution is
used at the bottomdue to themild change of velocity and pressure in this
region. Yuan and Wu (2006) presented a so-called top-down resolving
(TDR) technique to determine a set of suitable thickness for layers. The
basic concept of this technique is to keep a fine resolution from the top
layers down to the one just above the bottom layer, and use a coarse res-
olution for the bottom layer. With this TDR method, their model can
achieve the same dispersion accuracy using 5 non-uniform layers rather
than using 10 uniform layers for waves with kh= 4.

Young and Wu (2009) provided the top-layer thickness for their
two-layer non-hydrostatic model. For kh = 3.14, the top layer takes
50% of the water depth; for kh = 6, the top layer takes 39.3% of the
water depth, and for kh = 15, the top layer takes 15.7% of the water
depth. However, the dependence of the top layer thickness on kh values
hinders the model application in resolving highly dispersive random
waves. Young and Wu (2010) proposed an adapted top-layer control
(ATLC) method that eliminates the model layer thickness dependence
on kh. The basic concept is that the finer resolution of the top layer is
given by ΔσN = 0.5 / (N − 1), where ΔσN is the top layer size, and N
is the number of layers. The size of the rest layers exponentially
stretches to the bottom layer. The top layer size is set as 50%, 25% and
12.5% for two-, three-, and five-layer models, respectively. For a given
tolerance phase error of 1%, the two-, three-, and five-layer models are
capable of resolving linear wave dispersion up to kh = 3.14, 6.28 and
15.7, respectively.

Zijlema and Stelling (2005, 2008) and Zijlema et al. (2011) proposed
a non-hydrostatic, free-surface flow model, SWASH (an acronym of
Simulating WAves till SHore) for simulating wave propagation from
deep water to the surf zone, using a semi-implicit, staggered finite vol-
ume method. The adoption of the Keller-box scheme in this model en-
abled the pressure to be assigned at the free surface without any
approximation, and also enabled good dispersion properties at very
low vertical resolution (two or three layers). Using two uniform layers,
for a 1% tolerance phase error, SWASH achieves good linear dispersion
properties up to kh ≈ 7 and 3 for standing waves and progressive
waves, respectively. Using three uniform layers, for a 1% tolerance
phase error, SWASH achieves good linear dispersion properties up to
kh ≈ 7 for progressive waves. Zijlema et al. (2011) suggested that
adjusting layer thicknesses could significantly improvewave dispersion
accuracy. With layer thickness tuned as 10%, 20%, and 70% of the total
water depth, their three-layer model is able to simulate waves with kh
≈ 15.7 with a relatively small phase error.

Bai and Cheung (2013) provide theoretical dispersion relationships
for anN-layer Boussinesq-type system. The derived dispersion relation-
ships follow a [2 N− 2, 2 N] Padé expansion. The accumulative disper-
sion error is computed over 0.01≤ kh≤ 6 for covering a wide spectrum
of ocean waves from deep water to shoreline. The layer arrangement
appears as free parameter and can be adjusted for minimizing the

accumulative dispersion error, and optimizing the proposed model.
The two-layer model with the optimal layer arrangement of 50%–50%
of the water depth gives a minimum error of 3.445%. The three-layer
model with the optimal layer arrangement of 29%–32%–39% of the
water depth gives a minimum error of 3.09%.

Similar to Boussinesq-type models in which the location of the hor-
izontal velocity in the water column controls the dispersion properties,
the vertical distribution of the variables in non-hydrostatic free surface
flowmodels dictates themodel dispersion accuracy. Because solving the
Poisson equation is the most time consuming part of a non-hydrostatic
model, it is highly desirable to reduce the number of unknowns in the
water column by placing them at optimal locations. The objective of
our study is to derive the analytical dispersion relationship of a non-
hydrostatic free surface flow model and optimize it for extremely dis-
persive and highly nonlinear waves with only two or three layers. Al-
though the optimization method is applicable to all non-hydrostatic
models, for the demonstration purpose, the present work chose a
Euler model that uses the algorithm and numerical scheme presented
in Zijlema and Stelling (2005), except using thefinite differencemethod
in a sigma-coordinate. In this paper, we will present: (1) the derivation
of the phase speed of linear waves simulated by the semi-discretized
non-hydrostatic Euler model, and (2) the optimal two- and three-
layer distributions. For a 1% tolerance dispersion error, the optimal
two-layer distribution from bottom to top is 67% and 33% of the total
water depth and the Euler model is capable of simulating linear waves
up to kh = 9. For a 1% tolerance dispersion error, the optimal three-
layer distribution from bottom to top is 68%, 26.5% and 5.5% of the
total water depth and the Eulermodel is capable of simulating extreme-
ly dispersive waves up to kh= 49.5.

Furthermore, nonlinear standingwave tests have been performed to
examine the effect of nonlinearity. Kirby and Dalrymple (1986) pro-
posed a nonlinear dispersion relation, which effectively approximated
the dispersion characteristics of waves propagating from deep to shal-
low waters. The nonlinear effect was scaled by wave steepness ka0,
and the phase speed became a function of kh and ka0. In this paper, nu-
merical experiments with different ka0 are conducted. A fifth-order
Stokes-type exact solution for standing waves (Sobey, 2009) is utilized
to test our model. We have found that the phase speed of nonlinear
waves follows the analytically derived linear phase speed, although
the discrepancy rises as ka0 increases. Therefore the optimal layer distri-
bution can also be applied to the nonlinear wave simulation.

This paper is organized as follows: Section 2 briefly describes the
governing equations and the numerical schemes. Section 3 presents
the numerical results in comparison with the exact solution to demon-
strate the performance of themodel. In Section 4, we derive the analyt-
ical dispersion relationship of this discretized system of Euler equations
followed by the determination of the optimal two- and three-layer dis-
tributions for extremely dispersivewaves. Section 5 is focused on the ef-
fect of wave nonlinearity on the model performance with the optimal
layer distributions. Finally, Section 6 summarizes the findings and pre-
sents the conclusions.

2. The Euler model

2.1. Governing equations

The propagation of fully dispersive, nonlinear water waves is
governed by the continuity equation and the incompressible Euler
equations, which are written as

∂u
∂x� þ

∂w
∂z� ¼ 0 ð1Þ

∂u
∂t� þ u

∂u
∂x� þw

∂u
∂z� þ

∂p
∂x� ¼ 0 ð2Þ
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