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Non-hydrostatic models such as Surface WAves till SHore (SWASH) resolve many of the relevant physics in
coastal wave propagation such as dispersion, shoaling, refraction, dissipation and nonlinearity. However, for ef-
ficiency, they assume a single-valued surface and therefore do not resolve some aspects of breaking waves such
aswave overturning, turbulence generation, and air entrainment. To study the ability of suchmodels to represent
nonlinear wave dynamics and statistics in a dissipative surf zone, we compare simulationswith SWASH to flume
observations of random, unidirectional waves, incident on a 1:30 planar beach. The experimental data includes a
wide variation in the incident wave fields, so that model performance can be studied over a large range of wave
conditions. Our results show that, without specific calibration, the model accurately predicts second-order bulk
parameters such as wave height and period, the details of the spectral evolution, and higher-order statistics,
such as skewness and asymmetry of the waves. Monte Carlo simulations show that the model can capture the
principal features of the wave probability density function in the surf zone, and that the spectral distribution of
dissipation in SWASH is proportional to the frequency squared, which is consistent with observations reported
by earlier studies. These results show that relatively efficient non-hydrostaticmodels such as SWASH can be suc-
cessfully used to parametrize surf zone wave processes.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In the nearshore region and surf zone, ocean waves undergo a dra-
matic transformation mostly due to nonlinear wave–wave interactions
and breaker dissipation. These dynamics play a central role in nearshore
circulation and transport processes, e.g. by controlling wave setup
(e.g. Longuet-Higgins and Stewart, 1964), driving nearshore currents
(e.g. Longuet-Higgins, 1970; Longuet-Higgins and Stewart, 1964;
MacMahan et al., 2006; Svendsen, 1984), and causing morphodynamic
evolution (e.g. Hoefel and Elgar, 2003). Understanding these processes
and the development of predictive models is important for both scien-
tific research and engineering in the coastal zone. Since most coastal
and coastline processes take place on much longer scales than that of
the individual waves, predictive models are generally used to estimate
wave statistics (e.g. significant wave height, mean period) and varia-
tions therein. However, modeling wave statistics in the nearshore is
complicated both by the strong influence of nonlinear processes and
an incomplete understanding of dissipation of wave energy in shoaling
and breaking waves.

Stochastic (or phase-averaged) wave models for coastal applica-
tions are usually based on some form of energy (or action) balance
equation (e.g. Komen et al., 1994; The WAMDI Group, 1988; Wise
Group, 2007), which assumes that the wave field is (and remains)

quasi-homogeneous and near-Gaussian. However, due to nonlinearity,
surf zone wave statistics are generally strongly non-Gaussian, and
apart from variance, higher cumulants (e.g. skewness and kurtosis) are
required to completely describe the wave statistics. This poses high
demands on the model representation of the nonlinear and non-
conservative dynamics. In particular, for statisticalmodels, the represen-
tation of nonlinearity invariably requires some form of closure
approximation and involves evolution equations for higher-order corre-
lations, both of which generally render the model considerably more
complicated and computationally intensive (e.g. Herbers and Burton,
1997; Herbers et al., 2003; Janssen, 2006; Smit and Janssen, 2013).

Deterministic (and phase-resolving) wave models can generally in-
corporate nonlinearity more easily, and naturally include full coupling
to the wave-induced nearshore circulations. However, although a
model based on theReynolds-averagedNavier–Stokes (RANS) equations
can model surfacewave dynamics in great detail, and resolve very small
scales of motion (e.g. Torres-Freyermuth et al., 2007), the computational
cost can become prohibitive, even for small-scale applications. For wave
modeling of most coastal-scale applications, and in particular for coastal
engineering, more approximate but efficient models, such as so-called
non-hydrostaticmodels ormodels based on a Boussinesq approximation
are generally more useable. Boussinesq-type wavemodels have evolved
from weakly nonlinear and weakly dispersive models (see Peregrine,
1967), to nearly fully dispersive and highly nonlinear models
(e.g. Madsen et al., 2002; Nwogu, 1993;Wei et al., 1995), at the expense
however, of much increased complexity of the underlying model
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equations and numerical implementations. In contrast, non-hydrostatic
models are essentially numerical implementations of the basic conserva-
tion equations formass andmomentum(e.g.Ma et al., 2012; Stelling and
Zijlema, 2003; Yamazaki et al., 2009), which can be directly used for
wave propagation problems if sufficient spatial resolution, in particular
in the vertical, is provided. As a consequence, such models are relatively
simple, and grid resolution can be readily adapted to a particular applica-
tion and allow propagation of waves from deep to shallow water.

However, such non-hydrostatic models (and Boussinesq models for
that matter), do not model all aspects of surf-zone waves. In particular,
for the sake of efficiency, these models assume a single-valued repre-
sentation of the free surface in the horizontal plane, which implies
that processes such as overturning, air entrainment, and wave-
generated turbulence are not resolved. Instead, integral properties of
breaking waves (including energy dissipation rate) are estimated by
treating the breaking wave as a discontinuity in the flow variables
(free surface, velocities) and maintaining momentum (and mass) con-
servation across the discontinuity (Smit et al., 2013). Although this
gives good results for the second-order bulk statistics (such as the sig-
nificant wave height), it is not clear whether such an integral approach,
where someof the details of breakingwaves are treated as sub-grid pro-
cesses, can actually resolve the nonlinear and dissipative processes in
the surf zone, and thus predict the details of the spectral evolution
and nonlinear statistics there.

In the present work we set out to study these issues by comparing
simulations with the non-hydrostatic model Surface WAves till SHore
(SWASH, Zijlema et al., 2011) to flume observations of random waves
over a 1:30 planar beach (see Smith (2004)). The motivation behind
this work is to assess whether an efficient non-hydrostatic model such
as SWASH can be a viable tool to study surf zone dynamics and accu-
rately capture the statistics of strongly nonlinear and breaking waves.

In Section 2 we present themodel equations, numerical approxima-
tions, and breakermodeling in SWASH. The laboratory experiments and
specificmodel settings are described in Section 3 andwe present our re-
sults (model-data comparison) in Section 4.We discuss and sumup our
principal findings and their implications in Sections 5 and 6.

2. Model description

The non-hydrostatic model SWASH (Zijlema et al., 2011), is an
implementation of the Reynolds-averaged Navier–Stokes equations
for an incompressible, constant-density fluid with a free surface. In
the present work we use this model to study one-dimensional
wave propagation in a flume. In Cartesian coordinates, with x and z
the horizontal and vertical coordinate respectively, and with z mea-
sured up from the still-water level z0, the governing equations can
be written as

∂u
∂t þ

∂uu
∂x þ ∂wu

∂z þ ∂wu
∂z ¼ − 1

ρ
∂ ph þ pnhð Þ

∂x þ ∂τxz
∂z þ ∂τxx

∂x ; ð1Þ

∂w
∂t þ ∂uw

∂x þ ∂ww
∂z ¼ − 1

ρ
∂pnh
∂z þ ∂τzz

∂z þ ∂τzx
∂x ; ð2Þ

∂u
∂x þ

∂w
∂z ¼ 0; ð3Þ

where t is time, u(x,z,t) and w(x,z,t) are the horizontal and vertical
velocities, respectively, and ρ is the (constant) density. Further,
the hydrostatic pressure ph = ρg(ζ ‐ z) (with g being gravitational
acceleration) and pnh represents the non-hydrostatic pressure con-
tribution. The turbulent stresses ταβ are obtained from a turbulent
viscosity approximation (e.g. τxz = ν∂zu, with v the kinematic
eddy-viscocity) using a standard k − ε model closure approxima-
tion (Launder and Spalding, 1974). The water column is vertically
restricted by the (time-varying) free-surface z = ζ(x,t) and

immobile bottom z = ‐ d(x). Here d is the still water depth and the lo-
cation of the free surface ζ is found from continuity, expressed as

∂ζ
∂t þ

∂
∂x

Z ζ

−d
udz ¼ 0: ð4Þ

Eqs. (1)–(4) are solved for constant pressure at the free-surface (i.e.
p = 0), while accounting for the kinematic free-surface and bottom
boundary conditions,

w ¼ ∂ζ
∂t þ u

∂ζ
∂x z ¼ ζð Þ and w ¼ −u

∂d
∂x z¼−dð Þ: ð5Þ

At the up-wave boundary, waves are generated by prescribing the hor-
izontal velocity u(z, t) at that location, whereas opposite of the
wavemaker the boundary is formed by the moving shoreline.

Since the objective is to study surf zone wave dynamics, we need to
include motions in the infragravity band, which are generated in the
shoaling process and released during breaking. These low-frequency
components are much longer than the primary waves and much more
strongly affected by bottom friction. To incorporate this, we include a
bottom stress at the bottom boundary assuming a logarithmic velocity
profile (Launder and Spalding, 1974) and a typical roughness height dr.

2.1. Numerical approximations

For non-breaking waves these equations describe nonlinear
shoaling, and thus include the energy transfers across different length
scales in the wave spectrum due to triad and higher-order nonlinear-
ities. The accuracy with which these processes are represented in nu-
merical models such as SWASH, depends on the numerical methods
used to approximate the governing equations, and the spatial (horizon-
tal and vertical) and temporal resolutions used in the simulation. More-
over, when extending such models to the surf zone, careful attention
must be paid to the conservation properties (in particular of momen-
tum) of the numericalmethod (see Zijlema et al. (2011) for amore gen-
eral discussion of the numerical methods used in SWASH).

To accurately resolve wave motion in a phase-resolving model, the
horizontal resolution Δx must be a fraction of the shortest wave length
L that needs to be resolved, i.e. L/Δx = O(10). Similarly, the timestepΔt
is usually a fraction of the shortest wave period T, i.e. T/Δt = O(10). To
allow for accurate, undamped propagation over long distances, SWASH
uses a staggered horizontal grid combined with a second-order (in
space and time), explicit, finite-difference method that is neutrally
stable (no numerical damping) for small amplitude (linear theory)
waves. The vertical resolution, and numerical approximations of the
vertical pressure gradient, determines how well the model approxi-
mates the linear dispersion relation for surface gravity waves ω kð Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gk tanh kdð Þ

p
, which strongly affects propagation and dispersive char-

acteristics of the wave field.
Non-hydrostatic models oftenmake use of a boundary-fitted ver-

tical grid that divides the instantaneous water depth h = (ζ + d) in
a constant number of layers N, with variable vertical mesh-size
Δz = h/N. The required number of layers N then generally depends
on the deepest parts of the domain, and increases with the vertical
variability of the wave-induced velocity profile, for free-surface
waves represented by the relative depth kd. Hence, in shallow
water (kd ≪ 1), a coarse resolution generally suffices, whereas in
deep water (kd ≫ 1) a vertical resolution similar to the horizontal
resolution is required, Δz/Δx = O(1) (at least near the surface). Tra-
ditionally, this has severely limited the application of these models
to wave propagation, as the number of layers required to accurately
capture dispersion (say a relative error smaller than 1%) at high kd
(O(10)) can become very large (N N 20), resulting in excessive com-
putational times. These constraints are significantly relaxed in
SWASH due to the use of an edge-based vertical grid combined
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