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This paper presents CCHE2D-NHWAVE, a depth-integrated non-hydrostatic finite element model for simulating
nearshorewave processes. The governing equations are a depth-integrated verticalmomentumequation and the
shallow water equations including extra non-hydrostatic pressure terms, which enable the model to simulate
relatively short wave motions, where both frequency dispersion and nonlinear effects play important roles. A
special type of finite element method, which was previously developed for a well-validated depth-integrated
free surface flow model CCHE2D, is used to solve the governing equations on a partially staggered grid using a
pressure projection method. To resolve discontinuous flows, involving breaking waves and hydraulic jumps, a
momentum conservation advection scheme is developed based on the partially staggered grid. In addition, a
simple and efficient wetting and drying algorithm is implemented to deal with the moving shoreline. The
model is first verified by analytical solutions, and then validated by a series of laboratory experiments. The
comparison shows that the developed wave model without the use of any empirical parameters is capable of
accurately simulating a wide range of nearshore wave processes, including propagation, breaking, and run-up
of nonlinear dispersive waves and transformation and inundation of tsunami waves.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Nearshore wave processes are the major forces that dominate
coastal sediment transport, shape coastal morphology, threaten coastal
infrastructures, and cause flooding. In recent years, considerable efforts
have been made to develop accurate and efficient wave models for
predicting propagation, breaking, and run-up of nonlinear dispersive
waves in the coastal zone. Numerical models built on the well-
established Boussinesq-type equations have been widely used to
simulate wave motions. The basic idea of Boussinesq-type equations
is the elimination of the vertical coordinate, while accounting for
some influences of the vertical acceleration (Dingemans, 1997).
The classical Boussinesq equations of Peregrine (1967) only consider
weak nonlinearity and weak dispersion, and therefore, his formulation
is only applicable to khb 0.75 (where k is the wave number and h is the
still water depth) in practice (Madsen et al., 2002). To reduce these
constraints, several enhanced and higher-order Boussinesq-type
equations (e.g., Agnon et al., 1999; Gobbi et al., 2000; Madsen and
Sørensen, 1992; Madsen et al., 2002; Nwogu, 1993; Wei and Kirby,
1995) have been developed. However, these higher-order equations
usually involve complex numerical discretization and expensive
computation. In order to apply the Boussinesq-type models for

simulating nearshore processes, wave breaking has to be treated
carefully. Since Boussinesq-type equations are depth-integrated
formulations in nature, they cannot describe the overturning of the
free surface. In addition, the classical Boussinesq equations were
derived under the assumption of an irrotational and inviscid flow
(Peregrine, 1967), so they cannot directly account for energy
dissipation caused by wave breaking. Several semi-empirical
approaches have been developed to address these issues (e.g., Schäffer
et al., 1993; Veeramony and Svendsen, 2000; Zelt, 1991). In general,
these approaches have to add an extra dissipation term in the
momentum equation, and provide predefined criteria for the onset
and cessation of wave breaking and energy dissipation rate by
calibration using laboratory experiments. In this regard, the reliability
of those tunable parameters is likely dependent on the similarity
between the considered case and the experiment, and the accuracy of
the experimental data.

With the rapid development of computer hardware and numerical
methods, it becomes feasible to simulate wave propagation by
directly solving the three-dimensional (3D) Reynolds-averaged
Navier–Stokes (RANS) equations. Using this approach, the vertical
flow structure can be simulated together with the horizontal flow
field. With the aid of free surface tracking methods, such as the
Marker-and-Cell method (Harlow and Welch, 1965), the Volume-
of-Fluid method (Hirt and Nichols, 1981) and so on, solution of the
3D RANS equations has been successfully applied to simulate wave
breaking and run-up, as reported in the literature; see Lin and Liu
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(1998), Lin et al. (1999), and Christensen and Deigaard (2001),
among others. However, the high computational expense and strict
stability requirement of these free surface tracking methods make
applications to large-scale domains impracticable.

Another approach, the so-called non-hydrostatic method for
simulating water waves still solves the RANS equations, but it
explicitly includes the non-hydrostatic pressure to account for the
vertical acceleration of flows (Casulli and Stelling, 1998; Stansby
and Zhou, 1998). Compared with numerical wave models built on
the 3D RANS equations with free surface tracking methods, the
non-hydrostatic model usually solves the free surface motion with
a single value function in terms of horizontal coordinates and time, and
it therefore requires a much lower vertical resolution than that of the
free surface tracking methods. This property makes the non-hydrostatic
model a favorable choice to large-scale applications in coastal
engineering. An important issue that determines the efficiency and
accuracy of the non-hydrostatic model is the free surface pressure
boundary condition. In earlier non-hydrostatic model developments,
due to a staggered grid configuration in the vertical direction, the non-
hydrostatic pressure is specified at the cell center, and the hydrostatic
pressure assumption is made for the free surface layer (e.g., Casulli,
1999; Casulli and Stelling, 1998; Casulli and Zanolli, 2002; Chen, 2003;
Li and Fleming, 2001; Namin et al., 2001). This approximation ignores
the non-hydrostatic pressure effect at the free surface. As a result, a
relatively large number of vertical layers (i.e., 10–20 layers) are required
to resolve the wave dispersion to an acceptable level of accuracy.

Stelling and Zijlema (2003) proposed an edge-based compact
difference scheme to approximate the vertical gradient of the non-
hydrostatic pressure located at the interface between vertical layers.
In this way, the zero pressure boundary condition can be specified at
the free surface precisely. It turns out that their two-layer non-
hydrostatic model shows similar linear dispersion characteristics as
the extended Boussinesq-type models of Madsen and Sørensen (1992)
and Nwogu (1993). Later on, they implemented an efficient and stable
solver for the non-hydrostatic pressure (Zijlema and Stelling, 2005)
and released an operational public domain code: SWASH (Zijlema
et al., 2011). To date, their approach has been adopted in other models
for simulating wave motions (e.g., Ai et al., 2010; Cui et al., 2012; Ma
et al., 2012; Walters, 2005; Wei and Jia, 2013a; Yamazaki et al., 2008).

Similar to Boussinesq-type models, non-hydrostatic models simulate
the lumped effects of wave breaking rather than the detailed process. So
far, the techniques for modeling wave breaking used by non-hydrostatic
models are based on the physical principle applied in open channel
hydraulics. It has been observed that the nonlinear shallow water
equations can appropriately handle discontinuous flows (e.g., hydraulic
jumps and bores) with steep gradients, if the momentum is conserved
at the discretized level (Stelling and Duinmeijer, 2003). Consequently,
non-hydrostatic models with this property are able to track the actual
location of wave breaking and compute the associated energy dissipation
correctly without the application of any predefined criteria and empirical
parameters as used by Boussinesq-type models (Zijlema and Stelling,
2008). To achieve momentum conservation in the formulation, two
strategies have been utilized. Stelling and Duinmeijer (2003) developed
a momentum conservation scheme on the basis of the fully staggered
grid, and their scheme has been employed to handle wave breaking
when the non-conservation form of governing equations is considered
(Yamazaki et al., 2008; Zijlema et al., 2011). The other way is to solve
the conservation form of governing equations directly, since momentum
conservation is automatically taken into account (Ai and Jin, 2012; Ma
et al., 2012; Zijlema and Stelling, 2008). When it comes to the
determination of energy dissipation due to wave breaking in the scope
of non-hydrostatic formulations, it is straightforward to make use of the
eddy viscosity since it is a part of the RANS equations. Jacobs (2010)
and Ma et al. (2012) adopted the subgrid-scale model of Smagorinsky
(1963) into non-hydrostatic models to compute energy dissipation
induced by wave breaking and subgrid turbulence. The basic idea behind

their implementations is that the grid size involvedwith the simulation of
surfacewaves is usually smaller than the typical water depth, and the use
of the subgrid-scale model is able to prevent a chaotic current field
generated by wave breaking (Chen et al., 1999). With respect to the
turbulence models of SWASH, Zijlema et al. (2011) implemented the
Prandtl mixing length model to calculate the horizontal eddy viscosity,
and Smit et al. (2013) further added the subgrid-scale model of
Smagorinsky (1963) and a k− ε model to account for the horizontal
and vertical exchange of momentum, respectively. A major concern
recently addressed in the development of non-hydrostatic models is
related to the model efficiency when it is applied to the surf zone, in
which energetic wave breaking process requires the model with a
relatively high vertical resolution (i.e., 10–20 layers) to obtain accurate
results, while wave processes in the rest nearshore zone can be
simulated fairly well with a much lower vertical resolution (i.e., 1–3
layers). Smit et al. (2013) proposed a hydrostatic front approximation
(HFA) scheme, which assumes a hydrostatic pressure distribution at
the front of a breaking wave, and then the wave can rapidly transit
into a bore-like shape. As a consequence, the non-hydrostatic model
with a low vertical resolution can be applied to the whole nearshore
zone at a significantly reduced computational cost.

In this paper, we develop a depth-integrated non-hydrostatic finite
element model for simulating nearshore wave processes on the basis
of our previous work (Wei and Jia, 2013a,b). The shallow water
equations in the conservation form including extra non-hydrostatic
pressure terms are solved together with a depth-integrated vertical
momentum equation by a special finite element method based on a
partially staggered grid using the pressure projection method of
Stelling and Zijlema (2003). We construct a momentum conservation
advection scheme on top of the partially staggered grid to ensure the
model to be automatically shock-capturing, so it is able to deal with
breaking waves without the use of any empirical parameters, and we
also compare the numerical result with that computed with the HFA
scheme. To reduce wave damping caused by numerical diffusion, a
defect correctionmethodusing the advection term is also implemented.
In addition, a simple and efficientwetting and drying algorithm adapted
from Stelling and Duinmeijer (2003) is utilized to capture the moving
shoreline. Finally, we verify and validate the model by several
benchmark tests; good agreements with analytical solutions and
experimental data show that the developed model is suitable for
nearshore wave processes modeling.

The paper is organized as follows. The governing equations are
derived in Section 2. In Section 3, the finite element method and its
associated differential operators are briefly presented. And numerical
formulation and solution of the governing equations are described in
Section 4. In Section 5, several analytical solutions and laboratory
experiments are used to verify and validate the wave model. Finally,
conclusions are drawn in Section 6.

2. Governing equations

We consider a physical domain in a Cartesian coordinate system
(x, y, z) that is vertically bounded by the free surface elevation η(x,y,t)
and the bed elevation ζ(x,y) as shown in Fig. 1, where t is the time,
and the water depth is H(x,y,t)= η(x,y,t)− ζ(x,y). The incompressible
3D continuity equation and RANS equations are given by
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