
Application of higher-level GN theory to some wave
transformation problems

B.B. Zhao a, W.Y. Duan a,⁎, R.C. Ertekin b

a College of Shipbuilding Engineering, Harbin Engineering University, 150001 Harbin, China
b Department of Ocean & Resources Engineering, University of Hawai'i, 2540 Dole St., Holmes Hall 402, Honolulu, HI 96822, USA

a b s t r a c ta r t i c l e i n f o

Article history:
Received 3 June 2013
Received in revised form 6 October 2013
Accepted 9 October 2013
Available online 9 November 2013

Keywords:
Higher-level Green–Naghdi theory
Nonlinear and dispersive shallow-water waves
Submerged bar and breakwater

Recently derived (Webster et al., 2011), simplified higher-level Green–Naghdi equations (GN-3, GN-5 andGN-7)
are used in this work to simulate the transformation of two-dimensional, shallow-water wave problems. The
spatial derivatives are discretized through a five-point difference scheme. A new algorithm is developed to
solve the resulting block-pentadiagonal matrix. These high-level GN equations are then utilized to develop a
numerical wave tank. A wave-maker is placed at the forcing boundary of the tank that uses the stream-function
theory to generate nonlinear incident waves. The numerical wave tank is used to analyze the effects of large-
amplitude waves passing over a submerged bar. A damping zone is placed near the wave-maker (up-wave side)
to absorb the reflected waves from the front side of the submerged bar. Another damping zone is placed at the
down-wave side of the computational domain to absorb the radiated waves. In the first test case, the front and
back slopes of the bar are both mild (Luth et al., 1994). The waves that evolved over the bar are simulated by
using the GN-3, GN-5 and GN-7 equations. The GN-3 equations provide time histories that compare well with
the experimental data at different wave gauges, except at the ones behind the bar. The results of the GN-5 and
GN-7 equations compare very well with all the experimental data considered here. In the second test case, the
front and back slopes of the bar are both steep (Ohyamaet al., 1995). TheGN-5 equations predict thewave elevation
well. In the third test case, the front and back slopes of the bar alternate, one of them being mild and the other one
being steep (Zou et al., 2010). Again, the predictions of theGN-5 equations agreewith the experimental datawell. In
all the test cases considered in this work, there are some differences between the GN-3 and GN-5 results after the
crest of the bar. Numerical results obtained by the GN-5 and GN-7 equations are almost the same along the wave
flume, but the GN-7 equations require more computational time. Therefore, the GN-5 results are accepted here as
the convergedGN theory results. The numerical validations show that the GN-5 equations can simulate the strongly
nonlinear and dispersive waves observed behind the submerged bar crest satisfactorily.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The Green–Naghdi (hereafter, GN) theory (Green and Naghdi, 1976;
Green et al., 1974) was originally developed to analyze nonlinear free-
surface flows. Because of the successful application of this method to
nonlinear ship wave-making problems (Ertekin et al., 1986), the
method has been subsequently applied to many nonlinear water wave
problems.

The GN theory, as it is presented here, adopts a shape function
representation that approximates the vertical structure of the velocity
field (Demirbilek and Webster, 1992). The governing equations are the
depth-integrated form of Euler's equations. Both the bottom boundary
condition and the nonlinear free surface boundary conditions are
satisfied exactly. Because no other assumptions and approximations
are introduced, the GN equations are universally valid and can be applied
to any water depth, to regular and irregular waves, and incorporate

effects of varying bottom topography and vorticity (rotational). Since
no restrictions are placed on the rotationality of the flow field, the GN
theory can be used to study wave–current interactions, nonlinear
wave–wave interactions, rip currents, infragravity wave motion, Kelvin
shipwaves, and highly asymmetric waves, among others. The GN theory
can be applied to a full range of water depths; it is applicable to both
steady and unsteady waves, including random and unidirectional and
regular waves. It can deal with rapid variations in bottom topography
and incorporates wave–current interactions, internal and external
source/sink terms and directionally spread waves. Unlike some other
shallow-waterwave equations, e.g., the KdV equations, theGN equations
at any level are Galilean invariant, making the solutions physical
(Naghdi, 1978).

Irrotational Green–Naghdi (IGN) equations were derived by Kim
et al. (2001), and deep-water version of the IGN equations has been
applied to simulate ocean waves of extreme wave heights (Kim and
Ertekin, 2000). The IGN equations have also been derived for finite
water depth conditions and numerically tested to show their self-
convergence and accuracy (Kim et al., 2003).
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The original GN governing equationswere not limited to irrotational
flows. The GN model was extended to deep-water waves by Webster
and Kim (1991) and Xu et al. (1997) in two and three dimensions,
respectively. Demirbilek and Webster (1992) applied the GN theory
to shallow water and nonlinear wave propagation problems in two
dimensions; this appears to be the first real-world application of the
GN theory to prototype environment that have been used in non-
idealized bathymetry and wave conditions. Ertekin and Kim (1999)
studied the hydroelastic behavior of a three-dimensional mat-type
very large floating structure (VLFS) in obliquewaves by using the linear
Level I GN theory. Xia et al. (2008) studied the two-dimensional
nonlinear hydroelasticity of a mat-type VLFS within the scope of linear
beam theory for the structure and nonlinear Level I GN theory for the
fluid.

The different degrees of GN theory complexity are distinguished by
‘levels’. Demirbilek and Webster (1999) applied the GN-2 equations
(Level II GN theory) to shallow-water wave problems. Due to the rapid
increase in algebraic complexity at higher levels, the GN models up to
Level III have been derived but only a limited number of applications
exist (Shields and Webster, 1988; Xu et al., 1997). This is even more so
in the application of the GN theory to 3-dimensional problems except
by the use of the GN-1 equations in a couple of cases (see e.g., Neill and
Ertekin, 1997; Ertekin and Sundararaghavan, 2003).

Webster et al. (2011) simplified the structure of the GN equations,
thus enabling the utility of the higher-level GN equations (higher than
Level III). The Higher-level GN equations have been shown to be more
accurate in preliminary numerical calculations (Zhao and Duan, 2012).
Different Levels of the classical GN equations have different dispersive
properties (see e.g., Webster et al. (2011) for water waves, and Kim
and Ertekin (2002) for hydroelastic waves); this is also true for different
levels of the IGN equations (see e.g., Kim and Ertekin (2000) and Kim
et al. (2003)).

There are two main motivations for this research: to apply the
formulation of Webster et al. (2011) for the higher-level GN theory
that simplifies the formulation of Demirbilek and Webster (1999) and
to solve them accurately and efficiently, and to provide three validation
tests for the evaluation of the simplified higher-level GN theory. Note
that the GN eqs. of Webster et al. (2011) are essentially the same,
for a given level, as previously obtained by others, e.g., Demirbilek
and Webster (1992) and Shields and Webster (1988), but they are
now manageable computationally because of their much simpler form.
Until now, only up to Level 2 GN equations could be used in applications
because of their complexity.

In Section 2, the simplified GN equations are introduced. Section 3
provides details of the algorithm, and Section 4 introduces the wave-
maker and the damping zone. The test cases that are used in the
numerical solution of the higher-level GN equations are presented in
Section 5, followed by the conclusions we reach in Section 6.

2. GN theory

The simplified governing equations for the motion of a thin sheet of
fluid are provided by the GN theory (Webster et al., 2011). So far, there
are basically four sets of equations of theGN theory at each level, these are
the ones obtained by Green and Naghdi (1976), by Shields and Webster
(1988), by Demirbilek and Webster (1999), and by Webster et al.
(2011). They appear different but they are essentially the same as they
all follow themain character of the GN theory; that the equations provide
solutions that satisfy the exact free-surface and sea-floor boundary
conditions, and the postulated conservation laws exactly in the depth-
integrated sense. For example, the GN-1 equations of Green and Naghdi
(1976) would contain the bottom pressure in the equations but not the
GN-1 equations derived by Ertekin (1984) (see e.g., the original GN-1
Eq. (2.9) versus Ertekin's GN-1 Eqs. (2.16), (2.22), and (2.23) in Ertekin
(1984)) or by Demirbilek and Webster (1999), although they provide
exactly the same solutions. The simplified equations of Webster et al.

(2011) makes it possible to solve the higher-level GN equations easily,
something that was not possible before as the equations contained
many terms with high-order spatial derivatives. The current equations,
regardless of the level chosen, have up to third spatial derivatives only.

In this work, only two-dimensional wave problems are considered. x
is the horizontal and z is the vertical coordinate and the origin of
the coordinate system is located at the still-water level. The two-
dimensional GN equations involve the unknowns, β, u0, u1, …, where,
z = β (x, t)is the free surface, u0, u1, … are the unknown velocity
coefficients and z=α (x) represents the sea-floor surface, assumed to
be time-independent here. The reduced set of differential equations
for Level K GN (GN-K) theory are as follows:
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where m, r and n are nonnegative integers and g = 9.81 m/s2 is the
gravitational acceleration, and t is the time.

For the GN-1 equations, the horizontal velocity u and the vertical
velocity w are given by (see e.g., Ertekin (1988))

u x; z; tð Þ ¼ u0 x; tð Þ ð4aÞ

w x; z; tð Þ ¼ w0 x; tð Þ þw1 x; tð Þz ð4bÞ
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