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The functional design of submerged breakwaters is still developing, particularly with respect to modeling of the
nearshore wave field behind the structure. An effective design tool needs to calculate both 2D and 3D effects. A
numerical method for predicting the spatial transmission coefficient for regular waves in the shadow region of
a 3D submerged breakwater is proposed in this paper. Two distinct models have been developed using machine
learning algorithms; these artificial neural networks, based on multi-layer perceptron (MLP) and radial-basis
function (RBF) methods, have been designed and trained against new laboratory experimental data expressed
in terms of both dimensional and non-dimensional parameters. Comparisons between the experimental data
and predictions from the trained models show that the non-dimensional RBF model is able to best predict the
3D wave field around the submerged breakwater. The performance of the model was validated in interpolation,
extrapolation and at larger scale using different laboratory facilities, revealing sufficient agreement with the
experimental results to suggest that it has potential as a design tool in real applications.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Wave-generated turbulence, surge and currents created in the surf
zone as the result of wave breaking cause sediment transport and conse-
quently shoreline erosion and accretion. Because of population growth in
coastal areas as a result of urban development and recreational activities,
shoreline erosion has emerged as a serious concern. Various coastal
defense structures such as dikes, revetments, seawalls, and emerged or
submerged breakwaters are often adopted to protect the shoreline either
by stopping waves reaching the shoreline or at least forcing them to
break and to some extent dissipate their energy. Among these structures,
submerged breakwaters are increasingly preferred due to lower
construction costs and the significant dissipation of incidentwave energy
in the sheltered area leeside of the breakwater in an environmentally
friendly way. Retaining a clear view of the sea, preserving alongshore
transport and maintaining high water quality leeside are the additional
key features of submerged breakwaters. Constructing submerged break-
waters is intended to reduce erosion, trap natural sediments and restore
beaches. However, shoreline response to submerged breakwaters is
particularly influenced by the nearshore circulation and wave field
behind the structure driven by both 2D and 3D coastal processes such
as permeability through the body (2D), wave overtopping over the
crest (2D) and diffraction through the heads (3D).

2D wave transmission has been widely studied. Wave transmis-
sion coefficient Kt defined as the ratio of transmitted to incident

wave height is widely used by researchers to study thewave transmitted
behind coastal structures. Several different 2D design tools have been
proposed to calculate Kt behind 2D submerged breakwaters: (Buccino
and Calabrese, 2007; Calabrese et al., 2002; d'Angremond et al., 1996;
Goda and Ahrens, 2008; Panizzo and Briganti, 2007; Seabrook and Hall,
1998; van derMeer et al., 2005). However, the only information provided
by thesemodels is the average value of Kt rather than the spatial distribu-
tion ofwave height required of a reliable and accurate engineering design
tool. What is required is a method of predicting wave diffraction around
the head of the structure combined with the wave dissipation by
overtopping. Very few studies on the 3D effects (Bellotti, 2004; Caceres
et al., 2008; Hur et al., 2012; Johnson et al., 2005) and even fewer on com-
bined diffraction and overtopping effects of similar structures have been
conducted in the past (Buccino et al., 2009; Losada et al., 1996; Vicinanza
et al., 2009). The majority of these studies are restricted to low-crested
structureswith a small number considering fully submergedbreakwaters.
Thiswas the stimulus for the present study, which is intended to improve
nearshorewavefieldmodeling around submerged breakwaterswith par-
ticular emphasis on flow circulation and associated sediment transport.

The spatial distribution of the nearshore wave field around sub-
merged breakwaters has been investigated numerically using data-
driven algorithms called Artificial Neural Networks (hereafter ANNs).
Such models have proved to be useful in many fields of engineering to
solve complicated nonlinear problems where many relationships are
involved. ANNs have actually been applied successfully to some coastal
engineering problems (Mase et al., 1995; Medina, 1999; Panizzo and
Briganti, 2007; van Gent and van den Boogard, 1998; van Gent et al.,
2007; van Oosten et al., 2006).
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In the present study, two different ANN models have been designed
and trained using new experimental data and the predicted transmission
coefficients compared against each other and against actual data mea-
sured in facilities of different size.

The main body of the paper is divided into six sections. The introduc-
tion offers an overview of the topic, justification for the study, and a brief
literature review. Section 2 presents a brief description of artificial neural
network models and the basic concepts including an explanation of the
specific neural network models used in this study. A description of the
experiments, the methods of data selection, and approaches for data
pre-processing to prepare the training data are set out in Section 3. An
investigation of existing design tools is presented in Section 4. Section 5
concerns the numerical modeling using ANNs created specifically in
this project including the ANN model setup, calibration, analysis of the
model performance and verification. The capability of the proposed
numerical models to simulate wave height transformation over sub-
merged breakwaters is investigated in Section 6. ANN models are tested
in the numerical simulations and the results compared to the laboratory
experimental data. And finally, Section 7 completes the paper with the
main conclusions.

2. Artificial neural networks

Artificial neural networks imitate the structure of biological neural
networks. They consist of a massive number of computational units
simulating neurons (acquiring knowledge) and connected together
with interconnection weights which simulate synapses (storing the
knowledge) (Haykin, 1999). Through a learning process, network
parameters such as interlayer weights and bias values are modified
and adapted. Depending on how the ANNs are applied, the learning
process employed can be classified as supervised or unsupervised.
Basically, supervised learning is suitable for function estimations when
input–output paired data and a mathematical method for the learning
process are available, while unsupervised learning may be best in the
case of pattern recognition using data without a target (Haykin, 1999).
In this research, we are dealing with a function estimation problem;
therefore supervised learning is considered appropriate and will be
discussed further. For more information about other learning methods
and unsupervised methods in particular, please see: Haykin (1999). In
engineering applications, the most popular artificial neural network is
themulti-layer perceptron (MLP). Radial basis function (RBF) networks
with universal non-linear approximation properties are similar to
multi-layer perceptron in that they also use memory-based learning
algorithms for their design (Haykin, 1999; Park and Sandberg, 1993).
An introduction to ANN models, their basic framework, theoretical
properties, and differences between the ANN models employed in this
paper, are set out below.

2.1. Multi-layer perceptron (MLP) network

A multi-layer perceptron has an input layer, one or more hidden
layers and an output layer of computation units named neurons. The
transfer function of a multi-layer perceptron computes the inner prod-
uct between the input vector and the corresponding inter-layer weight
vector. Using a supervised form of learning for a given training data set S
including n input–output pairs, the learning algorithm computes
weights and biases of the network, so that the mean-square error
(MSE) is minimized (Haykin, 1999):

S ¼ xi; yið Þf g; i ¼ 1;…;n ð1Þ

MSE ¼

Xn
i¼1

yi−y⌢i

� �2
n

ð2Þ

where xi, yi and yi are respectively input, target response and output
computed by the network for the ith sample.

A back-propagation (BP) algorithm (Rumelhart et al., 1986;
Werbos, 1988) is usually employed to train MLP networks. The BP al-
gorithm initializes the network parameters, propagates the input
data forward through the network, and computes the output error
as (Haykin, 1999):

ei ¼ yi−y⌢i: ð3Þ

The computed error ei is then propagated backward through the net-
work and the weights and biases are adjusted so as to minimize the
mean-square error. Dealing with a nonlinear regression problem, batch
mode is implemented to adjust the network parameters in BP learning
on an epoch by epoch basis where each epoch consists of the entire set
of training samples (Haykin, 1999). Although simplicity and efficiency
in computations are significant advantages of BP learning, limitations on
convergence and slow learning speed, which is even more annoying
when complexity increase, is a disadvantage of the algorithm. For more
information about MLP networks and BP algorithm, please see: Haykin
(1999).

2.2. Radial-basis function (RBF) network

The RBF neural network concept was introduced by Broomhead and
Lowe (1988). Comparable to a MLP network, for the RBF network the
entire data set is split into twomain data sets and exploited by two dis-
tinct procedures of training and testing. The training process in RBF can
be interpreted as a curve-fitting problem, to find a surface in multi-
dimensional space which provides a best fit to the training data set.
The testing process, known also as generalization, is to use this multi-
dimensional surface for interpolating the test data set (Broomhead
and Lowe, 1988; Poggio and Girosi, 1990).

A RBF network consists of an input layer utilized to feed the input
data into the network, a hidden layer to compute the outcome of the
radial-basis functions and an output layer to combine the outputs
from the radial-basis linearly. The outcomes of the input layer are calcu-
lated based on theEuclideandistance between the network input vector
and RBF unit's center vector c. The hidden layer is a linear combination
of basis functions and outputs of this layer that are weighted forms of
the input layer outputs. A general expression of the network can be pre-
sented as (Robert and Howlett, 2001):

y xð Þ ¼
Xm

k¼1
wkΦ x−ckk kð Þ þ b ð4Þ

where w1,w2,…,wm are weight factors, Φ is the hidden layer transfer
function, ck is the center vector of the kth RBF unit and b is bias value.

The most popular and widely used radial basis function is Gaussian:

Φ x−ckk kð Þ ¼ e
− x−ckk k2

2σ2
k

� �
ð5Þ

where σk is thewidth of the kth RBF unit, a positive real number known
also as the scaling parameter.

3. Data collection

This section describes preparation of the experimental data set used
in this study to train and test the ANN models. Preparing data in ANN
modeling is an essential stage. For an accurate prediction, data prepara-
tion should be undertaken firstly to speed up the training process, sec-
ondly to reduce the model complexity, and thirdly to increase its
scope for generalization. Therefore, achieving success in ANNmodeling
depends critically on this stage and requires that the ANN is trained
using high quality data. In the present study, a large number of 3D
experiments have been conducted in wave tanks in the presence of
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