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In this paper, a shock-capturing numerical model, based on the combined solution of Boussinesq and
nonlinear shallow water equations is applied to the simulation of wave runup, overtopping and wave train
propagation over impermeable, emerged and low-crested, structures. In order to improve the performances
of the scheme at wet–dry interfaces, a numerical treatment is introduced to provide well-balancing of advec-
tive fluxes and source terms. One- and two-dimensional test cases are presented to validate the perfor-
mances of the model under both regular and irregular wave conditions.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Wave overtopping is an important parameter in the design of sev-
eral types of coastal structures. A reliable prediction of overtopping
discharges is necessary to determine the crest height and width of
new sea dikes, levees and breakwaters built to defend inland areas
from flooding. It is also important to assess the risk of inundation at
existing coastal defence structures, a topical problem in the light of
the ongoing sea level rise. Wave overtopping is also relevant in the
design of low-crested structures, which are frequently constructed
to protect shores from coastal erosion. In fact, wave overtopping in-
fluences the circulation patterns that develop around such structures,
conditioning their morphological impact on the adjacent littoral
(Vicinanza et al., 2009; Zanuttigh et al., 2008).

In the past ten years, wave overtopping was investigated in a large
number of studies and projects, mostly of experimental nature (e.g. De
Rouck et al., 2001; Van der Meer et al., 2009), which led to the develop-
ment of several empirical prediction formulae (CEM, 2003; EurOtop
Manual, 2007; TAW, 2002). The validity of such formulae is restricted to
specific wave conditions and structural characteristics, as it is constrained
to the configurations tested in the laboratory. This restriction affects the
prediction of wave overtopping at low-crested structures, because tradi-
tionally only well-emerged defence structures were studied; thus, most
of the available relations are not accurate for small freeboards. Moreover,
most empirical relations estimate mean discharge rates but do not pro-
vide information on the entity or duration of individual events, which

are important when considering the impacts of flooding on defended
areas or the resistance of a structure to the overtopping flow. A limited
number of studies was dedicated to investigating and predicting wave
by wave overtopping characteristics, like maximum discharge values or
flow velocities (Schüttrumpf, 2001; Van der Meer and Janssen, 1995;
VanGent, 2002; Victor et al., 2012). In the situationswhere the applicabil-
ity of empirical or semi-empirical formulae is uncertain, numerical
modelling can be a useful support to the design of coastal structures.

In order to provide a realistic and reliable prediction of wave
overtopping, a numerical model should be able to simulate wave
transformation from deeper to shallow water, wave breaking, wave
runup on the structure and the possible flow of water over and be-
yond it. The last two requirements demand the capability to accurate-
ly model the process of wetting and drying. Numerical models which
solve the nonlinear shallow water equations (NSWEs) by means of
shock-capturing techniques possess such a capability and have been
frequently applied to simulate wave overtopping (e.g. Dodd, 1998;
Hu et al., 2000; Tuan and Oumeraci, 2010). The drawback of these
models lies in the need to assign wave conditions close to the struc-
ture, due to the impossibility of reproducing wave propagation
employing the NSWEs, which neglect the effects of frequency disper-
sion. On the other hand, Boussinesq-type models, which incorporate
nonlinear and dispersive properties, are suitable to simulate wave
propagation but are rarely employed when overtopping phenomena
must be taken into account. This shortage may be ascribed to the dif-
ficulty of treating wetting and drying within the framework of tradi-
tional Boussinesq models, which require artificial and often complex
algorithms to deal with moving shorelines (e.g. Lynett et al., 2002;
Madsen et al., 1997; Zelt, 1991). Recently, numerical models based
on the Reynolds averaged Navier–Stokes equations (RANS) have
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received an increasing amount of attention in the context of over-
topping simulations (e.g. Ingram et al., 2009; Losada et al., 2008;
Reeve et al., 2008), given their ability to provide detailed information
on the flow characteristics as waves interact with structures. Their
applicability is however still limited by a significant computational
cost, especially when two horizontal dimensions are considered.
Therefore, the application of simplified but efficient schemes is still
attractive.

In this work, a shock-capturing model recently validated for the
simulation of regular and irregular wave breaking (Tonelli and Petti,
2009, 2012) is proposed for wave overtopping simulations. The nu-
merical model is based on the joint solution of Boussinesq and NSW
equations. The rationale behind the model consists in combining the
best features of the two families of equations, exploiting the comple-
mentarity of their applicability domains. As anticipated, Boussinesq-
type equations (Kirby, 2003; Madsen and Schäffer, 1999 for a review)
take into account both the nonlinear and the frequency-dispersive
features of wave motion, well representing wave propagation, but
they are not suited to model wave breaking, swash motion and
wave overtopping. Such processes are characterized by the prevailing
of nonlinearity over frequency dispersion, thus they can be studied
efficiently by means of the NSWEs, which are a non-dispersive subset
of Boussinesq-type equations. Keeping this in mind, the proposed
model solves a set of Boussinesq-type equations where nonlinear
and dispersive effects are both relevant and the NSWEs where disper-
sion is negligible with respect to nonlinearity. The scheme is based on
the finite volume method to benefit from the shock-capturing fea-
tures of the NSWEs. Therefore, once NSWEs are applied, flow discon-
tinuities, such as propagation on a dry bed, bore evolution and the
related energy loss, emerge as parts of the solution. As a result, the
numerical model can reproduce the propagation and transformation
of broken waves, at least of spilling type, and it can intrinsically cap-
ture shoreline motion, which are all important aspects for the simula-
tion of overtopping phenomena.

Given these features, the numerical model is expected to effective-
ly represent wave overtopping at coastal dikes and sloping seawalls,
predicting both averaged discharge values and wave by wave flow
characteristics. On the other hand, the simplifications of the governing
equations and the Eulerian nature of the solution technique, make the
numerical model unsuitable for the simulation of violent overtopping
events at vertical or very steep seawalls, which are characterized
by impulsive impacts with the formation of splashes and spray.
Therefore, this second type of overtopping scenarios will not be con-
sidered here.

With respect to the scheme presented in Tonelli and Petti (2012),
the numerical treatment of wet–dry transitions wasmodified to ensure
well-balancing of the scheme also in the presence of emerging topogra-
phies, following the works of Audusse et al. (2004), Liang and Marche
(2009) and Liang (2010). Similar techniques were recently proposed
by Kazolea and Delis (2013), Orszaghova et al. (2012) and Roeber and
Cheung (2012) in their Boussinesq–NSWE models.

The paper is structured as follows: the numerical model is de-
scribed in Section 2 — the governing equations are presented and
the numerical scheme is outlined, focusing the attention on the mod-
ified treatment of wetting and drying. The test cases are reported in
Section 3. The model is first applied to reproduce solitary wave evolu-
tion over initially dry and submerged reefs in order to verify its ability
to capture the propagation of moving wave fronts. Then, regular and
irregular wave overtopping of emerged structures is simulated in
one-dimensional conditions. Finally, a two-dimensional test case is
proposed: the model is applied to study the effect of wave overtopping
on the hydrodynamic circulation around a low-crested structure. Even
if wave overtopping is not particularly violent in such conditions, its
influence on the wave-current field, and hence on the evolution of
the protected littoral, is important and should be carefully taken into
account.

2. Numerical model

2.1. Governing equations

The numerical scheme solves the 2DHextended Boussinesq equations
derived byMadsen and Sørensen (1992) for slowly varying bathymetries
formulated in conservative form as:
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where h is the total water depth, P and Q are the volume fluxes along the
directions x and y, g is the gravitational acceleration and ρ is thefluid den-
sity. The symbolsψ1andψ2 denote themodified dispersive terms given by
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with d standing for the still water depth and η for thewater surface eleva-
tion measured from the still water level. B is a calibration coefficient
which determines the dispersion properties of the equations; the value
B = 1/15 was adopted, as suggested by Madsen and Sørensen (1992).

The terms τ1 and τ2 represent bottom friction and are approximat-
ed by Manning's friction law:
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where n is Manning's coefficient and the symbols U and V denote the
depth-averaged velocities along the directions x and y. By using this
expression it is implicitly admitted that the flow is fully turbulent,
which is a reasonable assumption for the conditions considered in
the following.

It is important to note that when the dispersive terms in (1) are
neglected, the nonlinear shallow water equations are recovered

h
P
Q

2
4

3
5
t

þ
P

P2
=hþ gh2=2
PQ=h

2
4

3
5
x

þ
Q

PQ=h
Q2

=hþ gh2=2

2
4

3
5
y

þ
0

−ghzx þ τ1=ρ
−ghzy þ τ2=ρ

2
4

3
5¼ 0: ð4Þ

2.2. Numerical scheme

Thefinite volumemethod (FVM) has been adopted to take advantage
of the shock-capturing abilities of the NSWEs. Such method cannot be
applied to the equations (1) straightforwardly, due to the presence of
high-order derivatives in the dispersive terms (2); therefore, following
Erduran et al. (2005), a hybrid technique is adopted. The advective part
of the equations is solved explicitly, employing the FVM;whereas disper-
sive and bottom slope terms are treated as source terms and discretized
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