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Methods for estimating extreme loads are used in design as well as risk assessment. Regression using maximum
likelihood or least squares estimation is widely used in a univariate analysis but these methods favour solutions
that fit observations in an average sense. Here we describe a new technique for estimating extremes using a
quantile function model. A quantile of a distribution is most commonly termed a ‘return level’ in flood risk anal-
ysis. The quantile function of a random variable is the inverse function of its distribution function. Quantile func-
tionmodels are different from the conventional regression models, because a quantile functionmodel estimates
the quantiles of a variable conditional on some other variables, while a regression model studies the conditional
mean of a variable. So quantile functionmodels allow us to study the whole conditional distribution of a variable
via its quantile function, whereas conventional regressionmodels represent the average behaviour of a variable.
Little work can be found in the literature about prediction from a quantile functionmodel. This paper proposes a
prediction method for quantile function models. We also compare different types of statistical models using sea
level observations from Venice. Our study shows that quantile function models can be used to estimate directly
the relationships between sea condition variables, and also to predict critical quantiles of a sea condition variable
conditional on others. Our results show that the proposed quantile functionmodel and the developed prediction
method have the potential to be very useful in practice.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

River and coastal flooding is an acknowledged natural hazard. There
are many national examples that can be quoted and that are described
in the academic andwider engineering literature. Sea level rise, changes
in local climate and development in flood plains have altered the hazard
and generally increased the consequences of flooding, and thereby the
overall risk. An improved ability to predict, quantify and manage flood
probabilities is essential to protecting the public, property and infra-
structure, and to maintaining a sustainable economy. More accurate
predictions of extreme conditions will improve the assessment, mitiga-
tion and management of flood risk.

Flood risk may be measured by the combination of the failure prob-
ability of a system such as a sea defence system and a measure of the
consequences of the resulting floods. This is commonly represented as
the probability of occurrence of an extreme event (or ‘hazard’) multi-
plied by the cost of the ensuing damage and hence ‘risk’ is measured
as a rate of expenditure. There are several commonly used approaches
to studying the probability of the functional failure of flood defences.
That is, the situation inwhich the natural conditions exceed the severity
for which a structure was designed to withstand; leading to the
unwanted transmission of water across the line of the defence whilst

not necessarily resulting in damage to the structure itself. One of these
approaches is based on the concept of a structure variable, which is a
known function of flood risk variables, such as sea condition variables.
In particular, the structure variablemethod reduces amultivariate prob-
lem to a univariate one by using a formula relating to the structural
performance, (for example, the wave overtopping rate), to combine po-
tentially correlated variables such as water level, wave height and wave
direction into a single variable which may then be analysed using uni-
variate techniques. The occurrence of failure is then defined in terms
of the structure variable exceeding a specified threshold rather than
the probability of occurrence of particular combinations of the primary
variables. See for example, the studies of Coles and Tawn (1994) and
Reeve (1998). Another approach is known as the joint probabilitymeth-
od and provides a procedure for estimating the probability that a struc-
ture variable exceeds a critical level based on the joint analysis of all
flood risk variables. Many papers and reports on the application of
thesemethods can be found in the literature. See, for example, the stud-
ies of Owen et al. (1997), Hawkes et al. (2002, 2004) and Meadowcroft
et al. (2004).

However, in using the standard methods of fitting distributions to
observations, the above two approaches are mainly influenced by ob-
servations in the bulk of the distributionwhichmay have little influence
on the formof the tail, themost important part of the distribution for es-
timating failure, and hence may provide poor fits. Methods based on
scaled error norms, (e.g., Li et al., 2008; Reeve, 1996), address this to
some degree but can be difficult to ‘tune’ precisely. A further approach
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is to estimate probability distributions by using only extreme values of
the flood risk variables, see for example, the studies of Coles (2001),
Coles et al. (1999), Tawn (1990, 1992) and Thompson et al. (2009).
Such an approach can seemwasteful of data, particularly to those mak-
ing the observations. Partly in response to this concern,modifications to
traditional approaches that use more observations have been devel-
oped, (e.g., Smith, 1986).

A common feature of the above approaches is that once a probabil-
ity model is established for a sea condition variable, the value of the
variable corresponding to a failure probability, i.e., the quantile or
the return level, needs to be calculated by inverting the estimated con-
ditional distribution function. If the estimated conditional distribution
is not a commonly used distribution, then it can be difficult to invert
the distribution exactly, and hence adding another layer of inaccuracy
to prediction.

Recently, there has been a surge in interest in quantile methods.
These methods allow us to directly estimate the conditional quantile,
i.e., the value that a sea condition variable takes with a required prob-
ability. Hence these models focus on the quantiles at a level of interest
(i.e., return levels) instead of the average value of a sea condition var-
iable, because of which, the quantile approaches to statistical model-
ling have been used in many areas including economics, finance and
medical research. See, for example, the studies of Koenker (2005)
and Gilchrist (2000).

Generally speaking, there are two types of quantile approaches:
one is semi-parametric (see, for example, Koenker, 2005) and another
is parametric (see for example, Gilchrist (2000)). Although somework
can be found in the literature on prediction with semi-parametric
quantile regression models, see, for example, those of Taylor (2005),
Cai (2010c) and Cai et al. (2012) and references therein, to the au-
thors' knowledge, little work on prediction with parametric quantile
function models can be found in the literature. Therefore, the main
contributions of this paper are: (a) to develop a method for extreme
value prediction via a parametric quantile function model, and (b) to
show, via a real data set, the differences between various statistical
models commonly used in extreme value prediction. The advantages
of the quantile approach are that it makes full use of all available
data including both extreme and non-extreme observations, it allows
us to use many non-standard distributions that may provide an im-
proved fit to observations leading to better predictions, and it provides
a natural way of dealing with multivariate problems so that predic-
tions on a flood risk variable conditional on a set of other variables
can be made. At this point it is perhaps worth emphasising that here
we use the words ‘model’, ‘estimation’ to mean ‘a statistical distribu-
tion used to model observations’ and ‘determining the best fit values
of the distribution parameters’ respectively.

In Section 2 we first give an outline of the two types of quantile ap-
proaches.We then introduce a special type of quantile function model
and present the new forecasting method in Section 3. The application
to the Venice sea-level data and comparisons with other commonly
used models are presented in Section 4. Finally, Section 5 provides
some further comments and conclusions.

2. An outline of the quantile approaches

2.1. Semi-parametric quantile regression model

Let Y be a continuous flood risk random variable, such as wave
overtopping rate or run-up level, and x = (x1,…,xp) be a vector of p
covariates. Given a set of observations {yi,x1i,…,xpi} (i = 1,…,n), a
semi-parametric quantile regression model (Koenker (2005)) for the
τth conditional quantile of Y, denoted by qY|X

τ is given by

qτY jX ¼ h ητ ; x1;…; xp
� �

; ð1Þ

where h is a known function of the covariate x and model parameter
ητ which depends on τ (0 ≤ τ ≤ 1). So, for example, if τ = 0.95,
model (1) gives a 95% conditional quantile of Y. Therefore, for a se-
quence of τ values, model (1) defines a sequence of conditional
quantiles of Y. These quantiles provide an estimate of the conditional
quantile function of Y. Note that model (1) does not contain an error
term, hence, the whole model is semi-parametric. A simple example
of (1) is the linear quantile regression model given by qY|X

τ = a0
τ + a1-

τx1 +⋯+ ap
τxp with ητ = (a0τ,…,apτ).

The model parameters can be estimated by using various
methods including the method based on solving the minimization
problem minητ∑n

i¼1ρτ uið Þ; where ρτ uið Þ ¼ ui τ−I uib0½ �
� �

, in which I[⋅]
is an indicator function and ui = yi − h(ητ,x1i,…,xpi), see for exam-
ple, those of Koenker and D'Orey (1987, 1994) and Koenker
(2005). The model parameters can also be estimated by using a
Bayesian method. For example, Yu and Moyeed (2001) proposed a
Bayesian approach to quantile regression with independent data;
Thompson et al. (2010) proposed a Bayesian non-parametric
quantile regression method with applications to sea condition
variables in coastal engineering; Cai and Stander (2008) studied a
Bayesian approach to a nonlinear quantile time series model.
Lancaster and Jun (2010) investigated the application of Bayesian
exponentially tilted empirical likelihood to inference about quantile
regressions. This semi-parametric approach has been used widely.
However, it can suffer from some problems. For example, the esti-
mated conditional quantile curves may cross over, leading to a fail-
ure of the method. Different methods have been proposed to solve
the crossing-over problem. See, for example, the approaches of
Bondell et al. (2010) and references therein.

2.2. Parametric quantile function model

Compared with the above semi-parametric approach, much less
work can be found in the literature about parametric approaches.
Gilchrist (2000) gave an excellent introduction to this parametric ap-
proach. A general parametric quantile function model is given by

QY τjξ;xð Þ ¼ h1 η1; x1;…; xp
� �

þ h2 η2; x1;…; xp
� �

Q τ;γð Þ; ð2Þ

where ξ = (η1,η2,γ) is the model parameter vector; hi (i = 1, 2) are
known functions of x and ηi, h2(η2,x1,…,xp) > 0 and Q(τ,γ) are the
quantile functions of the error term with explicit mathematical ex-
pression. A special case of model (2) is the linear quantile function
model given by QY(τ|ξ,x) = a0 + a1x1 +⋯+ apxp + Q(τ,γ) with
h1(η1,x1,…,xp) = a0 + a1x1 +⋯+ apxp, h2(η2,x1,…,xp) = 1 and η1 =
(a0,…,ap).

It is seen that in the parametric approach, the number of parameters
has been significantly decreased as themodel parameters do not depend
on τ, and the monotonicity of the conditional quantile function of Y can
be guaranteed due to the fact that QY(τ|ξ,x) is a well defined conditional
quantile function. Gilchrist (2000) discussed various methods for esti-
mating ξ. Cai (2009, 2010a, 2010b) proposed Bayesian approaches to
estimating parameters of different types ofmodel (2), including polyno-
mial, multivariate and time series quantile function models.

In this paper we focus on a special type of quantile functionmodels
with details given in the next section.

3. The prediction method

3.1. Polynomial quantile function model

As mentioned above, different choices of h1, h2 and Q in model (2)
lead to different quantile function models. If there is only one covar-
iate x, then the dependence between Y and x may be modelled by a
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