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This paper and its companion paper (Lara et al. (2012)) describe the capability of a new model, called IH-
3VOF, to simulate wave–structure interaction problems using a three-dimensional approach, when porous
structures are present. The lack of a universal approach for the formulation of porous media flow equations
has motivated a new derivation in the present work. Applications dealing with heterogeneous media,
where porosity varies along the porous body, such as the study of multilayered rubble-mound breakwaters,
are the final objective of the study. In this first paper, a new derivation of the equations, eliminating the limita-
tions imposed by previous approaches is presented. The model integrates a new set of equations which covers
physical processes associated with flow interaction with porous structures. The model considers the multiphase
VARANS equations, a volume-averaged version of the traditional RANS (Reynolds-Averaged Navier–Stokes)
equations. Turbulence is modeled using a k–ε approach, not only at the clear fluid region but also inside the po-
rous media. A VOF technique is used to track the free surface. In this first paper, the model has been validated
using laboratory data of a two-dimensional flow. In the companion paper the model is further validated with
new experimental data sets, considering porous and solid structures as well as the presence of air. The model
predictions present an excellent agreement with the laboratory measurements.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Wave interaction with coastal structures is, in essence, mainly a
three-dimensional problem. The most relevant hydraulic processes to
be considered in wave–structure interaction encompass wave reflec-
tion,wave dissipation,wave transmission resulting fromwave overtop-
ping andwave penetration through porous structures, wave diffraction,
run-up, and wave breaking. Although some of these processes have
been studied using a two-dimensional approach, a correct assessment
of flow characteristics and the consequent functional response of the
structure needs to be performed considering three-dimensionality.

Three-dimensional wave–structure interaction has been traditionally
studied by means of physical model tests. Wave diffraction patterns, re-
flection–transmission mechanisms and also wave overtopping under
obliquewave incidence have been studied among others. Only a few em-
pirical formulations have been derived from these studies to be specifi-
cally applied to three-dimensional scenarios, these studies being
focused on tailored experiments for specific problems.

In recent years, a great effort has beenmade in improving numerical
models to study wave–structure interaction problems. Among existing
approaches, two-dimensional Reynolds-Averaged Navier–Stokes
(RANS) models (Guanche et al., 2009; Lara et al., 2008; Losada et al.,

2008) have revealed that structural functionality and stability can be
studiedwith a high degree of accuracy, even in the presence of granular
material layers. Volume-Averaged Reynolds-Averaged Navier–Stokes
equations (VARANS), first presented by Hsu et al. (2002), have been
solved to characterize wave-induced flows within porous structures.
VARANS models in a two-dimensional form have shown that they can
overcome the inherent limitations presented in Nonlinear Shallow
Water (NSW) and Boussinesq equations models related mainly to
wave dispersion and breaking, vertical flow characterization, non-
hydrostatic pressure field and flow inside porous coastal structures.

However, three-dimensional wave-induced processes such as wave
radiation and diffraction around breakwater trunks and heads, or obli-
que wave incidence, can only be studied based on a three-dimensional
approach. SPH (Smoothed Particle Hydrodynamics, see Dalrymple and
Rogers (2005) for a general introduction) is an important tool for the
study of three-dimensional flows, that has been recently applied to
coastal engineering. This approach solves the flow in a Lagrangian
framework, solving the kinematics of each particle and its interaction
with neighboring particles. The Lagrangian nature of SPH makes it well
suited to simulate free surface flows with rapid changes of the flow
field. Recently, Shao (2010) has presented a two-dimensional model
which takes into accountwave interactionwith a porous flow structure.

On the other hand, several approaches based on the use of Eulerian
three-dimensional Navier–Stokes (NS from now on) sets of equations
can be found in the literature, for example Li et al. (2004); Liu and Lin
(2009); Losada et al. (2005); Lubin et al. (2003); Wang et al. (2009)),
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among others. However, none of them solved porous media flow, and
coastal structures are considered as impermeable. Hur (2003), and
more recently Hur et al., (2008) presented wave interaction with per-
meable structures using a three-dimensional approach. Porous media
flow equations used in the simulations follow a different approach to
the one presented by Hsu et al. (2002). Although resistance forces due
to the presence of flow across porous materials are represented in the
same form, by drag and inertia terms, the NS equations are not volume
averaged. Aerial and volume porosities are defined and applied to the
different terms of the NS equations, as aperture coefficients.

This last statement reveals that there is not a unique method to
model porous media flow. Differences are found not only in the clo-
sure model but also in the different terms considered in the NS equa-
tions. There are mainly two approaches: based on volume averaging
the RANS equations (i.e.: VARANS, Hsu et al., 2002; Slattery, 1999)
or based on time averaging volume-averaged equations (de Lemos,
2006). Even within the former, different sets of equations appear be-
cause of additional assumptions carried out by the authors during the
equations transformation. As will be shown, none of the previously
presented equations are comprehensive enough to cover the neces-
sary applications in coastal engineering. In this regard, it would be
necessary to determine the correct assumptions to derive the most
general set of equations to model porous media flow.

The aimof this paper is to reviewporousflowequations and to derive
a complete set of equations to be used to study three-dimensional flow
problems. It will be shown that this new set of equations includes porous
media flow in the NS equations on general domains, where heteroge-
neous porous media can be found. Equations are solved by a new
three-dimensional NS model, called IH-3VOF.

The paper is organized as follows. In the next section, the deriva-
tion of the equation is presented and discussed. Next, the numerical
model is developed, including the mathematical description and the
numerical implementation. A preliminary porous flow calibration-
validation is presented next for a classic dam-break problem, both
in two-dimensional and three-dimensional geometries. Finally, the
conclusions of this work are listed. The complete validation of the
model for its application to wave-structure interaction is presented
in part II of this study, Lara et al. (2012).

2. Model equations

A set of volume-averaged equations is derived in this section. The
direct resolution of the flow field inside the voids of porous media is
impractical, because of the complex structure of porous materials
and the stochastic nature of their geometry. Rubble-mound coastal
structures are made of individual rocks or armor units with a random
structure. Moreover, solving the flow characteristics inside the gaps
implies a very fine grid, increasing the computational cost. In order
to solve the flow equation within porous structures some assump-
tions should be made in advance.

It is assumed that porous media properties are independent of
time, i.e. the solid matrix deformation under the effect of the external
dynamics is such that it does not affect overall magnitudes such as
porosity distribution. Moreover, it is also considered that the flow in-
side and outside the porous medium can be modeled with the same
set of equations, implicitly coupling the flow outside the porous
(clear fluid region) and the flow within the porous media. This ap-
proach avoids the need to specify matching conditions in the clear
fluid porous medium interface, as followed by de Lemos and Pedras
(2001), in which interface and jump conditions were defined for ve-
locity and shear stresses. Matching conditions introduce uncertainty
in the solutions because the matching conditions are not perfectly
known, and also because the position of the interface is defined some-
what arbitrarily. In the following procedure, fluid is assumed to be
incompressible.

2.1. Volume-averaged model equations

The volume-averaged Reynolds-averaged Navier–Stokes (VARANS)
equations are obtained by volume averaging the Reynolds-averaged
Navier–Stokes (RANS) equations. Flow within the porous media is
volume-averaged in a control volume larger than the porous structure
but smaller than the characteristic length scale of the flow. The following
spatial average operator is introduced and applied to the RANS equations:

〈a〉
f ¼ 1

Vf
∫Vf

adV ð1Þ

where the superscript f means intrinsic magnitude and Vf refers to the
fluid volume contained in the averaging volume. Intrinsic magnitudes
refer to the portion of fluid existing within the gaps of the solid skeleton.
They can be related to averaged magnitudes (also called Darcy's magni-
tudes) with: 〈a〉=ϕ〈a〉f, where ϕ is the porosity, and is defined as:
ϕ=Vf/V, where V is the averaging volume. The application of this opera-
tor implies that the Reynolds-averaged magnitudes (ā) are split into a
spatially averaged quantity (〈ā〉) and a spatial fluctuation (ā″) part as fol-
lows:

�a ¼ 〈�a〉
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It is important to note that this operation transforms a porous
media made of a solid skeleton and gaps into a continuous and homo-
geneous medium, characterized by material properties such as poros-
ity and nominal diameter. This approach is very similar to the one
presented by (Sollitt and Cross, 1976). When the operator is applied,
small scale spatial fluctuations disappear from the solution, and then
the small details of the porous channel geometry are no longer needed
in order to obtain solutions. Mean spatial averaged quantities (〈ā〉) are
assumed to be constant in the whole averaging volume. Moreover, at
the clearfluid region, porosity becomes unity and the spatialfluctuation
(a″) vanishes, recovering the original situation where no averaging is
needed. This fact makes it possible to couple clear fluid and porous
fluid regions with the same set of equations.

Introducing the aforementioned decomposition and applying the
volume-averaging operator, the volume-averaged Reynolds-averaged
Navier–Stokes equations become as follows:
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where 〈〉f indicates the intrinsic average value of the variable in the fluid
domain, ūi being the ensemble-averaged velocity, �p the ensemble-
averaged pressure, primed variables are turbulent fluctuations and
double-primed variables are spatial fluctuations. The last two terms,
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