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A mathematical model of a linear electromechanical oscillator with a randomly fluctuating damping
parameter as an energy harvester is considered. To demonstrate the idea and present an explicit ana-
lytical solution the variations of the damping are taken in a form of a telegraphic process. It is shown that
substantial enhancement of the harvested energy can be reached if the proposed process has specially
selected characteristics. A close relationship with the mean square stability of the oscillator is estab-

lished. An analytical result for stationary electrical net mean power is presented.
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1. Introduction

Energy harvesting is a conversion of ambient energy presented
in the environment into electrical energy that can be used or
stored. The energy harvesters can be used as a replacement for
batteries in low-power wireless electronic devices (e.g. sensor
networks used in structural health monitoring). Among the power
harvesting methods, the conversion of mechanical energy from
vibrations into electrical energy via the piezoelectric effect is
particularly effective and has received a great attention over the
last 10 years (see e.g. books [1,2] and reviews [3-5]. Vibration-
based energy harvesters are typically implemented as linear me-
chanical resonators based on the following well-known phenom-
enon which is usually described at undergraduate texts in differ-
ential equations.

Consider the ubiquitous harmonic oscillator

X+ % + 0% = 5(t), (1)

where y > 0 is a damping parameter, @ is the natural frequency,
the excitation 7 (t) is harmonic, #(t) = a sin(«t). Then a solutions of
Eq. (1) grows dramatically if @ ~ £ and y is small (the resonance
phenomenon). A crucial limitation of the mechanical resonators is
that the best performance of the devices is limited to a very nar-
row bandwidth around the natural frequency. If the excitation
frequency deviates slightly from the resonance condition, the
power output is drastically reduced, rendering linear resonant
harvesters unsuitable for most practical applications. In a lot of
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cases the excitation exhibits a random rather than deterministic
behavior with a broad-band frequency spectrum.

When a broad-band external excitation is modeled by a zero-
mean Gaussian white noise with intensity D, the power gained by
the linear system is proportional to the noise intensity P, = D. The
latter is a very interesting result, since the harvested energy of a
linear system is independent of the system's parameters. This fact
has been extended to the case of nonlinear systems [6] and it has
been shown that the mass of the system and the noise intensity
are the two factors influencing the harvesting capabilities of any
dynamical system, except the bistable systems, for instance [7-10].
It should be stressed that the above result is the upper boundary
for the considered class of systems which may or may not be
reached, whereas in the real life environment, where the excita-
tion is rather broad band with finite power, any system has to be
adjusted for its best performance. For instance if one considers a
linear system (1) under the Ornstein-Uhlenbeck process then
power of (1) can be obtained exactly analytically using the method
of moments
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where D, u are parameters of the Ornstein-Uhlenbeck process. The
above formula clearly shows that the harvested power depends on
both the damping coefficient and the natural frequency of the
system.

In this paper we propose a promising approach for the vibra-
tion-based energy harvesting staying within the linear mechanical
system framework. The vibratory system has random time-varying
variations of the damping parameter with specially selected
characteristics that allow significantly enhance the energy
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harvesting. It can be achieved by using a magnetorheological (MR)
damper [11]. The major idea behind the MR damper is the MR fluid
which can change its viscosity under the influence of a magnetic
field. It has been reported that MR dampers require relatively low
amount of energy, outperform passive devices and SMAs, as well
as have a fast response [12-15].

2. Mathematical model of the energy harvester

The vibration-based energy harvester comprises two parts. The
key part is a mechanical oscillator but the second one is a capacitor
that stores the electrical energy and is coupled with the oscillator
by a transducer mechanism based on the piezoelectricity. A sim-
plified representation of the piezoelectric vibration - based energy
harvester is shown in Fig. 1 where the left part is the capacitive
energy harvesting circuit (capacitor) but the right one is the base
accelerated mechanical oscillator. Using Newton's second law and
Ohm's law one can obtain for the mechanical states and electric
voltage the following coupled equations [16]:

d?x(r) dx(7) _ 5 d2@
m 42 + b(T)idT +kx(z)+0V(@)= —m w2 )
V@) o, . ,.d%()
RG, e +V@) = Re—dr , 3)

where X is a deflection of mass m, b(r) is a time-varying damping
coefficient, k is a stiffness coefficient, @ is a linear electro-
mechanical coupling, C, is a capacitance of the piezoelectric ele-
ment, V is an electric voltage measured across the equivalent re-

sistive load R, and % is a base acceleration. We suppose that the
damping coefficient has the form
b = all + o (17)],

where ((wir) is some narrow band random variations of the
constant damping coefficient a with a frequency @w; and noise
intensity 0 < ¢ < 1. Introduce the substitutions
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Fig. 1. A simplified representation of the vibration-based piezoelectric energy
harvester.

where [, is a length scale. Then Eqgs. (2) and (3) are reduced to the
following system in the non-dimensional form:

— =Xy,
T

% = =X —7[1 + s (O)]x2 = kixs + n(t),

% =Xy — k2X3, (5)
We suppose that the process 7(t) is a Gaussian white noise with
intensity D. This process is considered as a good model of a broad-
band ambient excitation (see e.g. [17,16,18,19]). The random process
£(t) is a zero-mean telegraphic process with the state { — 1, 1} and
the transition rate /2. This process is an ergodic Markov process and
it is often used in applications (see e.g. books [20,21]). The spectral
characteristics of system (5) can be obtained exactly using the
measuring filters approach [22]. It should be stressed that such a
choice of the process was dictated by the ability of deriving an exact
analytical solution to set of Egs. (5) rather than anything else, thereby
illustrating clearly the influence of parameters on the energy har-
vesting process. It is possible to consider any other narrow band
exponentially correlated process excitation process, but an explicit
analytical solution may not be available resulting in a lack of un-
derstanding the phenomenon behind the proposed idea. The pro-
cesses 5(t) and &(t) are supposed independent. System (4) can be
presented as a linear system of It6 stochastic differential equations

dx; = x, dt,
dxy = — x; dt — y[1 + 6E(t)]1% dt — kyx3 dt + D dw (t),
dX3 =Xz dt — ](2X3 df, (6)

where w(t) is a standard Wiener process.

3. Analytical development and results

First consider system (4) with 5 = 0. The trivial solution of this
system is called mean square asymptotically stable if all second
moments of any solution of the system tend to zero when t — .

Let
a=a+y
ag=o1(1 +a( + a1+ k) + [@1Qa + y) + ki1ky

+ ankd x [y%ky + kiko + v (1 + ki + k3)1[8ky + 4a (1 + ky)
+ a(a + 2y)(a + 2ky)],
a; = bg + biky + bak3 + b3k + byk3,
bo=2a( + kpla* + 2% + 3ay (1 + k) + 2(1 + ky)?
+ a2 + 72 + 3k)],
by =3a% + 8(1 + k)2 + a*(8 + 7y2 + 4ky)
+ a3 x 24 + 492 + 17k) + 4ay (5 + 8k + 3kD)
+ 2a2(10 + 13k + 3k? + 872 + 7y2%ky),
by = 2a° + 15a% + 16y (1 + k) + 4a?y (13 + 3y2 + 5k))
+8a3 + 2k + 2722 + k)] + @3[2572 + 44 + k)],
bz = 2[4a* + 1323 + 8(1 + y2) + 4ay (6 + y2 + ky)
+ a? x (132 + 12 + 3kp)1,
by = 2[5a3 + 8y + 9a%y + 2a(5 + 2y + k)],
ay = 2k (a + 2ko)[a3 + 2ky + a2(y + k) + a2 + ki + yko)]. @)

It should be emphasized that the damping coefficient y is al-
ways positive because of our original assumption for 0 < ¢ < 1.
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