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a b s t r a c t

Models are developed for random functions ( )Q x t, of space ∈x D and time τ∈ [ ]t 0, from samples of
these functions and any other information when available. Most of the models in the paper can be
viewed as extensions of Karhunen–Loève (KL) representations for random fields. Their samples are linear
forms of basis functions with random coefficients which are extracted from samples of ( )Q x t, by singular
value decomposition. The coefficients of these forms are stochastic processes rather than random vari-
ables. The proposed models can be used to generate large sets of samples whose statistics are similar to
those of target random functions. Theoretical arguments and numerical examples are presented to es-
tablish properties of the proposed models, assess their accuracy, and illustrate their implementation.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Random functions ( )Q x t, of space ∈x D and time τ∈ [ ]t 0,
abound in applications, e.g., temperatures and ozone levels in ci-
ties during a day or season, pressure fields on aircrafts, buildings,
and other physical systems, wave forces on offshore platforms,
ships, and dikes, and pollution concentration in rivers. These
functions can also be used to describe the spatial variation of
material properties at small scale and their evolution in time
caused by large loads and/or excessive temperatures.

Generally, the number of available records of space–time ran-
dom functions ( )Q x t, is insufficient to estimate their probability
laws and find statistics of system responses subjected to actions
described by these types of random functions. For example,
available records are insufficient to estimate ozone levels and
wind speeds of relatively large return periods. Statistics of stress
fields in aircrafts during takeoff and landing, which are essential
for developing economical and safe designs, cannot be derived
from a few records of random actions on these systems. Models

( )Q x t,m , which are consistent with the available information on
target random functions ( )Q x t, , need to be used to characterize
these functions beyond their records and solve practical problems.

There is a vast literature on space–time random functions in
the statistical literature, where they are referred to as spatial
random processes, functional time series, and space–time random
functions [13–15]. The objective of most of these studies is to
construct models that match the first two moments of target
space–time random functions. In contrast, our objective is to
construct models whose samples are similar to those of target
space–time random functions ( )Q x t, from the available informa-
tion, which consists of samples of ( )Q x t, or samples of ( )Q x t, and
some information on the probability law of this random function.

Most of the models in our discussion can be viewed as exten-
sions of the Karhunen–Loève (KL) representations for random
fields Q(x), ∈x D, i.e., random functions of space coordinates.
These representations are superpositions of eigenfunctions of the
correlation function of Q(x) with random coefficients { }Zk . The
proposed models have the same functional form except for that
stochastic processes { ( )}Z tk are used in place of the random
coefficient { }Zk . These types of models have been used to solve
stochastic partial differential equations (SPDEs) in both applied
[21] and theoretical [2] (Section 3.1.1) studies. In these context, the
model components are solutions of differential equations. In our
context, the model components are inferred from the available
information on ( )Q x t, .

The following section restates the objective of this study in
formal terms. Sections 3 and 4 develop models for time-stationary
and arbitrary random functions ( )Q x t, , present properties of these
models, and develop bounds on the discrepancy between target
functions ( )Q x t, and models of these functions. Numerical ex-
amples are in Section 5. They illustrate the construction of the
proposed models for various space–time random functions ( )Q x t,
and levels of information on these functions. The model perfor-
mance can be assessed precisely since the probability laws of the
target functions are known. It is found that the proposed model
are satisfactory in all cases examined in this study.

2. Problem definition

Let ( )Q x t, , ∈x D, τ∈ [ ]t 0, , be an − valuedq random function
of space x and time t, where D is a bounded subset of p ,

=p 1, 2, 3, and τ[ ]0, denotes a bounded time interval. Our ob-
jective is to construct a family of models { ( )}Q x t,m , = …m 1, 2, ,
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for ( )Q x t, from (1) a set { ( )}q x t,i , i¼1,…,N, of ≥N 1 independent
samples of ( )Q x t, or (2) a set { ( )}q x t,i , i¼1,…,N, of ≥N 1 in-
dependent samples of ( )Q x t, and some properties of this random
function, e.g., the knowledge that ( )Q x t, is a time-stationary
random function.

Consider the family of random fields { ( ) ∈ }Q x t x D, , indexed by
τ∈ [ ]t 0, . The members of this family have the same properties if

( )Q x t, is time-stationary but their properties change in time if
( )Q x t, is not time-stationary. This observation is used to construct

models for this random function. If ( )Q x t, is time-stationary, the
properties of the random fields { ( ) ∈ }Q x t x D, , are time-invariant
and can be estimated from the values of the samples { ( )}q x t,i , i¼1,
…,N, at a single time τ∈ [ ]t 0, . This estimation approach uses
partially the available information. It can be improved by using
values of { ( )}q x t,i , i¼1,…,N, at several times =t tr , = …r n1, , r ,
which are spaced adequately such that the dependence between
the random fields ( )Q x t, r and ( )′Q x t, r , ≠ ′t tr r is weak. If ( )Q x t, is
not time-stationary, the law of the random fields { ( ) ∈ }Q x t x D, ,
changes in time so that the spatial variation of ( )Q x t, cannot be
inferred from values of the samples { ( )}q x t,i , i¼1,…,N, at a single
time.

The following two sections develop models for time-stationary
and arbitrary random functions ( )Q x t, . Theoretical arguments and
numerical examples are presented in these sections to clarify
features of the models of ( )Q x t, and illustrate their implementa-
tion. It is shown that space–time random functions can be re-
presented by linear forms of basis functions of spatial argument

∈x D with random coefficients, which are stochastic processes
rather than random variables. Both the basis functions and the
random coefficients can be extracted from samples of ( )Q x t, . For
simplicity, it is assumed that the random function ( )Q x t, is real-
valued with mean zero.

3. Models for time-stationary random functions

Denote by Q(x), ∈x D, an arbitrary member of the family of
random fields { ( ) ∈ }Q x t x D, , indexed by τ∈ [ ]t 0, . If the random
field Q(x), ∈x D, has continuous square integrable correlation
function ( ) = [ ( ) ( )]r x y E Q x Q y, , it admits the Karhunen–Loève (KL)
representation φ( ) = ∑ ( )=

∞Q x Z xk k k1 , ∈x D, where { }Zk are un-
correlated random variables with means 0 and variances λ{ }k and
λ φ{ ( )}x,k k are the eigenvalues and eigenfunctions of the integral
equation ∫ φ λ φ( ) ( ) = ( )r x y y dy x,

D
, ∈x D [11] (Section 3.6.5). It is

common in applications to approximate Q(x) by truncated KL ex-
pansions, i.e., models of the type

∑ φ( ) ≃ ( ) = ( ) ∈ = …
( )=

Q x Q x Z x x D m, , 1, 2, ,
1

m
k

m

k k
1

where m denotes the truncation level.
This fact suggests to describe the space–time random function

( )Q x t, considered in this section by versions of KL representations
which allow the random variables { }Zk to fluctuate in time. This
extension of the model in Eq. (1) has the form

∑ φ τ( ) ≃ ( ) = ( ) ( ) ∈ ∈ [ ]

= … ( )
=

Q x t Q x t Z t x x D t

m

, , , , 0, ,

1, 2, , 2

m
k

m

k k
1

where φ{ → }D:k  are deterministic functions, referred to as basis
functions, and { ( )}Z tk are real-valued, stationary stochastic pro-
cesses with mean zero and finite variance, rather than random
variables as in Eq. (1). The model ( )Q x t,m of ( )Q x t, has been used
in [2] (Section 3.1.1) to solve partial differential equations with
space–time white noise input.

We note that the models ( )Q x t,m in Eq. (2) and the target
random function ( )Q x t, have similar properties in the sense
clarified by the following property.

Property 1. The random function ( )Q x t,m in Eq. (2) has mean zero
and is time-stationary.

Proof. The first two moments of ( )Q x t,m are [ ( )] =E Q x t, 0m and
φ φ[ ( ) ( )] = ∑ [ ( ) ( )] ( ) ( )=E Q x t Q y s E Z t Z s x y, ,m m k l

m
k l k l, 1 . The latter mo-

ment simplifies to φ[ ( ) ( )] = ∑ [ ( ) ( )]=E Q x t Q y s E Z t Z s, ,m m k
m

k k k1
φ( ) ( )x yk if the processes { ( )}Z tk are uncorrelated. Since the ex-

pectations [ ( ) ( )]E Z t Z sk l depend only on the time lag ( − )t s , the
random functions ( )Q x t,m are weakly time-stationary for both
correlated and uncorrelated { ( )}Z tk . Since the processes { ( )}Z tk are
stationary by assumption, we have
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for arbitrary ≥d 1 and times …t t s, , ,d1 , so that the random func-
tions ( )Q x t,m are time-stationary.□

The implementation of the model in Eq. (2) requires to select
the basis functions φ{ }k and specify the properties of the stochastic
processes { ( )}Z tk . We accomplish this task in two steps. First, the
basis functions φ{ }k are constructed from the spatial variation of
the samples of ( )Q x t, at arbitrary times. Second, the orthogonality
property of the basis functions is used to extract samples of { ( )}Z tk

from samples of ( )Q x t, , which are subsequently used to construct
models for these processes.

3.1. Spatial variation

Let Q(x), ∈x D, continue to denote ( )Q x t, at an arbitrary time
τ∈ [ ]t 0, . Let be a Hilbert space with norm induced by an inner

product 〈· ·〉, that contains the samples of Q(x) and let { }ei , ∈i I , be
an orthonormal basis of , where I is an index set. An arbitrary
element e of admits the representation = ∑ 〈 〉∈e e e e,i I i i, where
{〈 〉}e e, i are Fourier coefficients. It can be shown [12] (Theorem
3.4.10) that the set of non-zero Fourier coefficients is countable, so
that = ∑ 〈 〉=

∞e e e e,k k k1 . Accordingly, the samples ω( )Q x, of Q(x)
admit the representation

∑ω ω φ( ) = ( ) ( ) ∈
( )=

∞

Q x Z x x D, , ,
3k

k k
1

where the functions φ{ ( )}xk define an orthonormal basis, i.e.,
∫ φ φ δ( ) ( ) =x x dx

D k k kl, and ∫ω ω φ ω φ( ) = 〈 (· ) (·)〉 = ( ) ( )Z Q Q x x dx, , ,k k Q k are
Fourier coefficients.

Truncated versions,

∑ω ω φ( ) = ( ) ( ) ∈
( )=

Q x Z x x D, , ,
4

m
k

m

k k
1

of the representation in Eq. (3) have the form of the model of
( )Q x t, in Eq. (2) for an arbitrary time. The representation of Q(x) in

Eq. (4) is an element of the subspace m of spanned by the basis
functions in this equation, i.e., φ φ= ( … )span , ,m m1 , and re-
presents the projection of Q(x) on m.

The error field ε ( ) = ( ) − ( )x Q x Q xm m with samples

∑ε ω ω ω ω φ( ) = ( ) − ( ) = ( ) ( ) ∈
( )= +

∞

x Q x Q x Z x x D, , , , .
5

m m
k m

k k
1
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