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a b s t r a c t

Estimation of statistical moments of structural response is one of the main topics for the analysis of
random systems; balancing between accuracy and efficiency is still a challenge. In this work, a new point
estimate method (PEM) based on adaptive dimensional decomposition is presented. Firstly, by in-
troducing the normal-to-nonnormal transformation, a system with general variables is changed into one
with independent standard normal variables. Secondly, the criterion for delineating the existence of cross
terms is derived theoretically, together with its practical implementation. Thirdly, by combining with the
dimension-reduction method (DRM), an adaptive dimensional decomposition for moment function is
proposed and the PEM based on adaptive dimensional decomposition, which comprises two types of
sub-methods, is developed. Finally, several examples are investigated to verify the accuracy, efficiency,
convergence and rationale of the proposed method.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Evaluation of the statistical moments of structural response is one of the main topics for the analysis of random system. In theory, this
involves the high dimensional integral of the joint probability density function (PDF). The point estimate method (PEM) of the moments of
the system response is an efficient approach, in which deterministic structural analysis is necessary.

In general, point estimate method can be classified into two types. In the first type, the integrand of the high dimensional integral
involves the exact response function; for the second type, the response function is replaced by its approximate integrand.

The earliest research for the first type came from Rosenblueth [1,2], of which 2n re-analysis are necessary for a structure with n random
variables which will be expensive for large n. By introducing the eigensystem of the correlation matrix of the basic variables, Harr ex-
tended Rosenblueth's PEM to accommodate large number of random variables, where only 2n points are required [3]. Chang et al. pro-
posed a modified Harr's method based on the standardized eigenspace [4], and then generalized the method to systems with nonnormal
random variables by introducing the Nataf transformation [5]. All the methods mentioned above have low precision for strongly nonlinear
systems. Through the Rosenblatt transformation or Nataf transformation, Zhou and Novak transformed the original variables into in-
dependent standard normal variables, and then evaluated the moments by various Gauss quadrature rules [6]; however, the resulting
rules are also not suitable for strongly nonlinear systems.

In the second type for estimating the moments, there are usually two kinds of approximations of multivariable functions. One is the
product approximation, the other is the summation approximation. Most studies have concentrated on the summation approximation, in
which the multivariate function is approximated by the sum of low-dimension functions. Based on the Taylor expansion of a multivariate
function, Li approximated a general function by the summation of univariate quartic polynomials and the 2nd cross terms of all the
variables, in which the expectation of univariate functions are evaluated by a three-point method and the coefficients of the 2nd cross
terms are approximated by finite differences [7]. Zoppou and Li and Tsai and Franceschini replaced the univariate quartic polynomials in
Li's method by univariate linear polynomials and cubic polynomials, respectively [8,9]. Hong extended PEM for univariate function to
multivariate function directly, with a multivariate function in approximation [10]. Rahman and Xu proposed similar summation
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approximation, namely a univariate dimension-reduction method (DRM) [11], together with its rigorous proof, and then develop a
generalized DRM in which a multivariate function is approximated by the summation of low-dimension functions [12]. However, all the
methods above are not convenient for strongly nonlinear systems and for higher probabilistic moments due to the difficulty in de-
termining the points. For the standard normal variable, the points and associated weights is determined easily by the nodes and weights of
Gauss–Hermite quadrature, hence the transformations between arbitrary random vector and independent standard normal vector is very
useful for estimating moments. Zhao and Ono presents an efficient and easy-to-implement PEM [13], which combines the univariate DRM
with the Rosenblatt transformation in essence, and Li et al. develops a more practical PEM by substituting the Rosenblatt transformation
with the Nataf transformation [14], and Zhang et al. further combines the bivariate DRM with the Rosenblatt transformation of an de-
pendent random vector [15].

The DRM has become a promising method for estimating the moments. Even if the multivariate DRM is more accurate and theoretically
appropriate, the univariate DRM is more popular because of its high efficiency. Therefore, improving the efficiency of multivariate DRM is
essential and useful.

This paper presents an adaptive multivariate dimension-reduction model for multivariate functions based on the delineation of the
cross terms, thus deleting the unnecessary terms of the traditional multivariate dimension-reduction model. It is organized as follows. In
Section 2 the theoretical basis for delineating the existence of the cross terms is proposed, together with its practical implementation.
Then, by combining the remodeling of a multivariate function based on normal-to-nonnormal transformation, the dimensional decom-
position of a general function and delineating the existence of cross terms, an adaptive dimensional decomposition for a general function
and its higher order moment functions is presented in Section 3, including the point estimates of the pertinent moments based on the
adaptive dimensional decomposition. To verify the accuracy, efficiency, convergence and rationale of the proposed point estimated
methods, several mathematical examples and engineering cases are numerically examined in Section 4. Finally, Section 5 summaries some
conclusions.

2. Delineating the existence of cross terms

In a random system, its stochastic response can be expressed by

Θ= ( ) ( )Z g 1

where Z is the system response, Θ¼(Θ1,Θ2,…,Θn)T is the basic random vector of the system, and g(∙) is a general function describing the
relation between the input vector Θ and the output Z. And the interactive relation of Θi and Θj on Z is described by the cross terms of Θi

andΘj in g(∙). However, the impact of the components ofΘ can be independent or correlated. Therefore, there are cross terms ofΘi andΘj

in Eq. (1) if the interactive relation of Θi and Θj on Z exists, or else the cross terms of Θi and Θj disappear.

2.1. Theoretical background

Lemma 1. If Θ¼(Θ1,Θ2)
T, the sufficient and necessary condition for g(Θ1,Θ2) being without the cross terms of Θ1 and Θ2 is that
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for all possible θi(k), where θi(k) (i,k¼1,2) is the kth sample of Θi.

Proof. : According to Taylor's expansion, there exists
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Similarly, it is clear that
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Substituting Eq. (5) into Eq. (4) reads
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