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a b s t r a c t

In this paper a unified probabilistic framework for solving inverse problems in the presence of epistemic
and aleatory uncertainty is presented. The aim is to establish a flexible theory that facilitates Bayesian
data analysis in experimental scenarios as they are commonly met in engineering practice. Problems are
addressed where learning about unobservable inputs of a forward model, e.g. reducing the epistemic
uncertainty of fixed yet unknown parameters and/or quantifying the aleatory uncertainty of variable
inputs, is based on processing response measurements. Approaches to Bayesian inversion, hierarchical
modeling and uncertainty quantification are combined into a generic framework that eventually allows
to interpret and accomplish this task as multilevel model calibration. A joint problem formulation, where
quantities that are not of particular interest are marginalized out from a joint posterior distribution, or an
intrinsically marginal formulation, which is based on an integrated likelihood function, can be chosen
according to the inferential objective and computational convenience. Fully Bayesian probabilistic in-
version, i.e. the inference the variability of unobservable model inputs across a number of experiments, is
derived as a special case of multilevel inversion. Borrowing strength, i.e. the optimal estimation of ex-
periment-specific unknown forward model inputs, is introduced as a means for combining information
in inverse problems. Two related statistical models for situations involving finite or zero model/mea-
surement error are devised. Multilevel-specific obstacles to Bayesian posterior computation via Markov
chain Monte Carlo are discussed. The inferential machinery of Bayesian multilevel model calibration and
its underlying flow of information are studied on the basis of a system from the domain of civil en-
gineering. A population of identically manufactured structural elements serves as an exemplary system
for examining different experimental settings from the standpoint of uncertainty quantification and
reduction. In a series of tests the material variability throughout the ensemble of specimens, the entirety
of specimen-specific material properties and the measurement error level are inferred under various
uncertainties in the problem setup.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Main characteristics and challenges of inverse problems in en-
gineering sciences subsume the following issues. Firstly, the ever-
growing complexity of physical modeling increases the computa-
tional expense of deterministic forward simulations. Secondly, un-
certainty is omnipresent and calls for an adequate mathematical
formalism of representation and management. Thirdly, since data are
commonly scarce or prohibitively expensive to acquire, the available
information has to be carefully handled. An abstract inverse problem
statement thus reads as follows. By analyzing a limited amount of
data the endeavor is to optimally learn about unknown forward

model inputs that are subject to epistemic uncertainty and aleatory
variability. This includes deducing fixed albeit unknown forward
model parameters as well as hyperparameters that determine the
distribution of variable model inputs. Such a universal formulation
describes a class of inverse problems that has hardly been sa-
tisfactorily solved yet. Our goal is therefore to develop a rigorous and
extensive framework for formulating and solving such inverse pro-
blems in support of data analysis for engineering systems. The focus
of this research is on experimental situations as they are typically
encountered in this field. We emphasize aspects of uncertainty
quantification and information accumulation. In order to establish a
sound conceptional and computational basis for solving those pro-
blems one has to complement ideas and techniques that have been
developed in different academic disciplines and scientific commu-
nities so far. This involves inverse modeling, Bayesian statistics and
uncertainty quantification. In the following we will shortly survey
relevant theories and practices.
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In the first place we rely on the Bayesian approach to classical
inverse problems [1,2]. When a physical theory or a computational
solver relates physical parameters to measurable quantities, i.e. the
forward model, classical inversion is the process of reasoning or
inferring unknown yet physically fixed model parameters from
recorded data [3,4]. Bayesian inference establishes a convenient
probabilistic framework to accomplish this conventional type of
parameter estimation and data assimilation. At least since the
advent of the personal computer it is nowadays widely used in
engineering applications [5,6]. The stochastic paradigm provides a
natural mechanism for the regularization of ill-posed problems,
however, it requires the specification of a prior and a noise model.
Hierarchical inversion is an extension of the classical framework
that allows to set parameters of the prior and the noise model in a
data-informed manner [7,8]. While epistemic uncertainty is
naturally incorporated, a shortcoming of these types of parameter
estimation is that they do not account for aleatory variability.

In the second place hierarchical statistical models serve as the
main tool for the analysis of complex systems. Those are systems
that are hierarchically organized at multiple nested layers. Pro-
minent instances include random and mixed effects models [9].
Historically those models were developed in social and biological
sciences e.g. for purposes of educational research [10,11] and
pharmacokinetics/dynamics [12,13]. Some recent reviews about
the methods that were developed in these fields can be found in
[14,15]. Hierarchical modeling can be viewed from a more fre-
quentist [16,17] or a more Bayesian perspective [18,19]. At the
present day it is mature area of research that establishes sort of an
overarching theme in modern multidisciplinary statistics. Dedi-
cated chapters can be found in numerous standard references for
Bayesian modeling and inference [20,21]. A general observation is
that hierarchical models may be complex in their probabilistic
architecture whereas only little forward modeling takes place.

In the third place we respect the uncertainty taxonomy that is
prevalent in risk assessment and decision making. According to
this classification one distinguishes between epistemic and alea-
tory uncertainty [22,23]. On one side, epistemic uncertainty refers
to the ignorance or lack of knowledge of the observer and analyst.
By taking further evidence this type of uncertainty is reducible in
principle. On the contrary, aleatory uncertainty or variability refers
to a trait of the system under consideration. It is a structural
randomness of irreducible character. Uncertainties can be ac-
counted for in distinct mathematical frameworks and especially
the representation of ignorance is the subject matter of ongoing
debates [24,25]. Graphical statistical models such as Bayesian
probability networks establish a powerful and widespread tool of
uncertainty characterization [26,27]. In risk-based decision making
Bayesian belief networks have been adopted for their strength and
flexibility in uncertainty modeling [28,29] and their elegant me-
chanisms of information aggregation [30,31].

In the fourth place probabilistic inverse problems constitute a
challenging class of inverse problems that is of theoretical and
practical relevance alike. While classical inversion is concerned
with estimating uncertain yet physically fixed parameters in a
series of experiments, i.e. identifying an epistemically uncertain
quantity, probabilistic inversion deals with inferring the distribu-
tion of such forward model inputs that vary throughout the ex-
periments, i.e. quantifying their aleatory variability. Previously
established approaches to this interesting type of problems with
latent/hidden variable structure subsume various approximate so-
lutions. A frequentist technique that is premised on the simulation
of an explicitly marginalized likelihood is proposed in [32]. There
are also attempts to compute approximate solutions based on
variants of the expectation–maximization algorithm within a lin-
earized Gaussian frame [33] or with the aid of Kriging surrogates
[34]. A methodological review of this school of probabilistic

inversion is found in [35]. These methods are only partly Bayesian
and suffer from the deficiency of providing mere point estimates.

The potential of hierarchical models as instruments of statis-
tical modeling and uncertainty quantification have barely been
acknowledged for the purposes of inversion in a classical sense.
Hierarchical and probabilistic inversion are first steps towards
preparing the Bayesian framework for the treatment of more
realistic experimental scenarios. These approaches do not fully
exhaust the inferential machinery of hierarchical models and the
probability logic of Bayesian networks, though. In this contribution
we thus aim at bridging that gap by developing a coherent Baye-
sian framework for managing uncertainties in such undertakings.
By drawing on the statistical theory of hierarchical models, we cast
inversion under parameter uncertainty and variability as Bayesian
multilevel calibration. This embeds a joint and a marginal problem
formulation of Bayesian inference under uncertainty, both of
which can be numerically solved with plain vanilla or specialized
Markov chain Monte Carlo methods.

This new formulation of multilevel inversion is especially well-
adapted to the challenges that engineers are frequently faced with.
It naturally allows for sophisticated uncertainty modeling which
comprises both epistemic and aleatory uncertainty. The inclusion
of the former is straightforward whereas the introduction of the
latter is an extension to classical parameter estimation. It also
promotes a pervasive “blackbox” point of view on the forward
model. While this is inevitable in many complex applications, it is
not readily compliant with traditional hierarchical models. Pre-
viously established strategies of enhanced uncertainty quantifica-
tion, e.g. hierarchical and probabilistic inversion, emerge as special
cases of the proposed general problem formulation. This also of-
fers the opportunity to cope with probabilistic inversion within a
fully Bayesian setting. Beyond these extensions some fundamen-
tally new possibilities are suggested. Based on the probabilistic
calculus of multilevel models, we develop a novel formulation of
multilevel inversion in the zero-noise and “perfect” data limit. The
statistical effect of “borrowing strength” or “optimal combination
of information” is transferred and applied to inverse problems.

The paper is organized as follows. In Section 2 we will elaborate
a general Bayesian framework for the treatment of uncertainty and
variability in inverse problems. This is followed by a discussion
about Bayesian inference in the context of multilevel inversion in
Section 3. Thereafter Section 4 will provide an extension of the
framework that will allow for handling “perfect” data. Probabilistic
inversion and borrowing strength will be placed in context in
Sections 5 and 6, respectively. Dedicated Bayesian computations
based on Markov chain Monte Carlo are reviewed in Section 7.
Lastly in Section 8 we will conduct a selection of numerical case
studies, where by considering various experimental situations and
uncertainty setups the very potential and the computational
challenges of the devised modeling paradigm will become
transparent.

2. Bayesian multilevel modeling

Due to the lack of a unified terminology, we define a hier-
archical or multilevel model as “an overall system model that is
hierarchically composed of deterministic and stochastic sub-
models”. Important types of submodels comprise physical models
of the deterministic system components (Section 2.1), prior de-
scriptions of parameter uncertainty and variability (Section 2.2)
and residual representations of forward model prediction errors
(Section 2.3). From these submodels we will assemble a generic
Bayesian multilevel model (Section 2.4). This will represent the
overall system under consideration including its deterministic and
probabilistic aspects.
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