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a b s t r a c t

A cross-flow hydrokinetic turbine with a projected area (product of
blade span and rotor diameter) of 0.7 m2 is evaluated in open-
water tow trials at three inflow speeds ranging from 1.0 m/s to
2.1 m/s. Measurements of the inflow velocity, the rotor mechanical
power, and electrical power output of a complete power take-off
(PTO) system are utilized to determine the rotor hydrodynamic
efficiency (maximum of 17%) and total system efficiency
(maximum of 9%). A lab-based dynamometry method yields
individual component and total PTO efficiencies, shown to have
high variability and strong influence on total system efficiency.
The method of tow-testing is found effective, and when combined
with PTO characterization, steady-state performance can be
inferred solely from inflow velocity and turbine rotation rate.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Development of hydrokinetic turbines used for electricity generation involves advancing systems
through technology readiness and performance levels to commercialization [1,2]. Field testing of
scaled prototypes is a critical phase of development following laboratory experimentation and
addresses two potential limitations under laboratory conditions. First, a turbine’s hydrodynamic
performance and thrust can be augmented in confined flow (such as a recirculating laboratory flume
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or tow tank) due to increased mass flux through the turbine and accelerated flow around the turbine,
resulting in a higher pressure drop across the rotor [3]. Second, below a critical Reynolds number,
where the lift and drag coefficients of hydrofoils depend on current velocity, rotor performance also
depends on current velocity [4–6]. Because hydrofoils in a cross-flow turbine (rotation axis perpendic-
ular to direction of flow) undergo dynamic stall as a consequence of large changes in the angle of
attack, a critical Reynolds number cannot be accurately determined from static foil data [7]. In a lab-
oratory setting, it can be difficult to achieve Reynolds independence due to limitations on maximum
velocity in experimental facilities and the aforementioned consequences of flow confinement as
model size increases.

Nomenclature

Abbreviations
A rotor projected area
ADV acoustic Doppler velocimeter
c blade chord length
CP coefficient of performance
D turbine diameter
H turbine span/height
~I generator current, dynamometry
I generator current
IMU inertial measurement unit
IU turbulence intensity
KV generator voltage constant
N number of blades
NB gearbox ratio
Pe electrical power
Pk kinetic power
PTO power take-off
r turbine radius
R resistive load
t blade thickness
U1 undisturbed upstream water velocity
~V generator voltage, dynamometry
V generator voltage
z submergence of rotor
gB gearbox efficiency
gG generator efficiency
gL electrical efficiency
gS total system efficiency
h helical pitch angle
k tip-speed ratio
q density
r solidity
rU standard deviation
u helical sweep angle
~shss high-speed shaft torque, dynamometry
shss high-speed shaft torque
slss low-speed shaft torque
~xhss high-speed shaft rotation rate, dynamometry
xhss high-speed shaft rotation rate
xlss low-speed shaft rotation rate
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