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a b s t r a c t

The approximate transient response of multi-degree-of-freedom (MDOF) quasi non-integrable Ha-
miltonian system under Gaussian white noise excitation is investigated. First, the averaged Itô equation
for Hamiltonian and the associated Fokker–Planck–Kolmogorov (FPK) equation governing the transient
probability density of Hamiltonian of the system are derived by applying the stochastic averaging
method for quasi non-integrable Hamiltonian systems. Then, the approximate solution of the transient
probability density of Hamiltonian is obtained by applying the Galerkin method to solve the FPK equa-
tion. The approximate transient solution is expressed as a series in terms of properly selected basis
functions with time-dependent coefficients. The transient probability densities of displacements and
velocities can be derived from that of Hamiltonian. One example is given to illustrate the application of
the proposed procedure. It is shown that the results for the example obtained by using the proposed
procedure agree well with those from Monte Carlo simulation of the original system.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The randomness in structural dynamics is often encountered in
various engineering fields. The sources of randomness may be
environmental loads such as ground motion, atmospheric turbu-
lence, sea waves, etc., as well as structural properties such as
materials properties, geometry parameters and so on. Moreover,
real structures are generally nonlinear and of MDOF. In recent
years, the response of nonlinear systems to stochastic excitation
has received much attention. If a nonlinear system is subjected to
Gaussian white noise excitation, the probability density function
(PDF) of the response is governed by the Fokker–Planck–Kolmo-
gorov (FPK) equation. It is difficult to obtain the transient solution
of the FPK equation for MDOF nonlinear stochastic system. The
analytical transient solutions of the FPK equation are available only
for linear systems and some special nonlinear systems [1–3]. Due
to the difficulty in solving FPK equation, the Monte Carlo simula-
tion method is commonly used to analysis the transient responses
of nonlinear stochastic systems. Some other numerical methods
have also been proposed to predict the transient responses of
nonlinear systems under stochastic excitations, e.g., the cell
mapping method [4], path integration method [5,6], and finite
element method [7]. Recently, Pichler used the finite element

method to compute the evolution of the joint probability density
function over time and to determine first excursion probabilities
[8]. Yue et.al. studied the transient and steady-state responses in a
self-sustained oscillator subject to harmonic and bounded noise
excitations using generalized cell mapping method [9]. Iwan and
Spanos obtained the nonstationary amplitude response statistics
of a lightly damped and weakly nonlinear oscillator subject to
Gaussian white noise by using averaging method and perturbation
techniques [10]. The Galerkin method, as a variation method, has
been adopted to study both transient responses and first passage
problems[11,12] of nonlinear systems. Atkinson adopted this
method to study the stationary response of several second-order
nonlinear systems [13], and the non-stationary case was studied
by Wen [14]. Recently, the non-stationary response of nonlinear
oscillators subject to additive Gaussian white noise was studied by
Spanos and the transient probability density of the system has
been obtained as the sum of a set of selected basis functions with
time-dependent coefficients through the general Galerkin method
[15]. Using this method, Jin et. al. studied the non-stationary
probability density of single-degree- of-freedom (SDOF) strongly
nonlinear system subject to modulated white noise excitation [16],
the non-stationary probability densities of MDOF nonlinear sys-
tems under Gaussian white noise excitations [17,18], and the first-
passage failure of MDOF nonlinear oscillator [19]. Qi and Xu et. al.
studied the non-stationary probability densities of a class of
nonlinear systems excited by external colored noise [20]. However,
the results obtained by using the Galerkin method are limited to
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SDOF systems or MDOF weakly coupled systems under stochastic
excitations. Recently, the transient responses of quasi integrable
Hamiltonian systems [21] and quasi partially integrable Hamilto-
nian systems [22] have been studied by the present authors.

The stochastic averaging method [23,24] may be used to reduce
the dimension of stochastic systems. It has been applied by many
authors to study the stationary responses, the stabilities with
probability one, the first-passage problem for MDOF nonlinear
stochastic systems. Recently, the stochastic averaging method has
been extended by Zhu and Yang [25] to MDOF quasi non-integr-
able Hamiltonian systems. Moreover, the stationary response [25],
stochastic stability [26], first passage failure [27] and Hopf bi-
furcation [28] of MDOF nonlinear stochastic systems has also been
studied by using the stochastic averaging method for quasi non-
integrable Hamiltonian systems.

In the present paper, the approximate transient response of
quasi non-integable Hamiltonian system under Gaussian white
noise excitation is investigated. First, the averaged Itô equation of
Hamiltonian and the associated FPK equation governing the
transient probability density of Hamiltonian are derived by ap-
plying the stochastic averaging method for quasi non-integrable
Hamiltonian systems. Then, the approximate solution of the
transient probability density of the Hamiltonian is obtained by
applying the Galerkin method to solve the FPK equation. The ap-
proximate solution is expressed as a series in terms of properly
selected base functions with time-dependent coefficients. The
transient probability densities of displacements and velocities can
be derived from that of Hamiltonian. Finally, an example is given
to illustrate the application of the proposed procedure. It is shown
that the results obtained for the example by using the proposed
procedure agree well with those from Monte Carlo simulation of
the original system.

2. The stochastic averaging method for quasi non-integrable
Hamiltonian systems

Consider an n degree-of-freedom (DOF) stochastically excited
and dissipated Hamiltonian system governed by the following n
pairs of equations:

Q
H
P 1ai

i

̇ = ∂ ′
∂ ( )

P
H
Q

c
H
P

f W t
1bi

i
ij

i
ik k

1/2ε ε̇ = − ∂ ′
∂

− ∂ ′
∂

+ ( )
( )

i j n k m, 1, 2, , ; 1, 2, , .= … = …

where Q i and Pi are generalized displacements and generalized
momenta, respectively; H H Q P,′ = ′( ) is a Hamiltonian with con-
tinuous second-order derivatives; c c Q P,ij ij= ( ) are differentiable
functions representing coefficients of quasi linear dampings;
f f Q P,ik ik= ( ) are twice-differentiable functions denoting ampli-
tudes of random excitations; ε is a small positive parameter; W tk ( )
are Gaussian white noises in the sense of Stratonovich with cor-
relation functions
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The system governed by Eqs. (1a) and (1b) is termed a quasi-
Hamiltonian one and it is generally nonlinear. The first summation
terms on the right-hand side of Eq. (1b) may represent a set of
linear and (or) nonlinear damping mechanisms, while the second
summation terms may include external and (or) parametric

excitations of Gaussian white noise.
Eqs. (1a) and (1b) are equivalent to the following set of Itô

stochastic differential equations:

dQ
H
P

dt
3ai

i
= ∂ ′

∂ ( )

⎛
⎝⎜

⎞
⎠⎟dP

H
Q

c
H
P

D f
f
P

dt f dB t
3b

i
i

ij
i

kl jl
ik

j
ik k

1/2ε ε ε= − ∂ ′
∂

− ∂ ′
∂

+
∂
∂

+ ( )
( )

i j n m, 1, 2, , ; k 1, 2, , .= … = …

where B tk ( ) are the Wiener processes. The double summation
terms on the right-hand side of Eq. (3b) are known as the Wong–
Zakai correct terms [29]. These terms can usually be split into two
parts: one has the effect of modifying the conservative forces and
another modifying the damping forces. The first part can be
combined with H Q/ i−∂ ‵ ∂ to form overall effective conservative
force H Q/ i−∂ ∂ with modified Hamiltonian H H Q P,= ( ) and with
H P H P/ /i i∂ ∂ = ∂ ′ ∂ . The second part may be combined with

c H P/ij jε− ∂ ′ ∂ to constitute effective damping forces m H P/ij jε− ∂ ∂ with
m m Q P,ij ij= ( ). With these accomplished, Eqs. (3a) and (3b) can be
rewritten as follows:
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Without dampings and Gaussian white noise excitations, Eqs.
(4a) and (4b) become

q
H
p 5ai

i

̇ = ∂
∂ ( )

p
H
q 5bi

i

̇ = − ∂
∂ ( )

i n1, 2, ,= …

which represent an n-DOF Hamiltonian system with modified
Hamiltonian H. It is well known that a Hamiltonian system may be
integrable or nonintegrable. An n-DOF Hamiltonian system is said
to be integrable or completely integrable if there exist n in-
dependent integrals of the motion which are in involution. This
last termmeans that the Poisson bracket of any two these integrals
vanishes. For a nonintegrable or completely non-integrable Ha-
miltonian system, this is only one independent integral of the
motion, i.e., the Hamiltonian H. Completely integrable Hamiltonian
systems are exceptional. Siegel and Morse [30] have shown that, in
certain classes of Hamiltonian systems, the non-integrable ones
form a dense set. In view of this fact, in the present paper, the
Hamiltonian system governed by Eqs. (5a) and (5b) is assumed to
be non-integrable.

Since H is a function of Q i and Pi, an Itô stochastic differential
equation for H can be derived from Eqs. (4a) and (4b) by using Itô
differential rule as follow:
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