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a b s t r a c t

The particle swarm optimization (PSO) algorithm is introduced in the Kriging modeling process to
overcome the limits of pattern search method's single-point search scheme as well as its heavy de-
pendence on the initial guess solution when obtaining the optimal correlation parameters. PSO-Kriging is
proved to give better simulation by interpolating and extrapolating the unobserved points. In reliability
analysis, cumulative formation of repeatedly using sampling points in previous iterations is introduced
into PSO-Kriging and the classic response surface method (RSM). Cumulative formation can take full
advantage of available sampling information and avoid reciprocating oscillation in the iterative process.
One explicit nonlinear limit state function example demonstrated that cumulative scheme can make
both PSO-Kriging and RSM much more effective, no matter latin hypercube sampling (LHS) or iteratively
interpolating sampling (IIS) approach is utilized. Cumulative PSO-Kriging seems to be even more stable
and efficient. Two slope reliability analysis examples including a practical nuclear plant breakwater's
reliability analysis problem proved that the proposed cumulative PSO-Kriging is very suitable for the
reliability analysis of real engineering structures.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Uncertainties are observed in material and geometric proper-
ties as well as external loads during structures' lifetime. Therefore,
recent decades are characterized by growing realization of the fact
that, for meaningful analysis of engineering structures, uncertainty
should be taken into account and the structural reliability theory
provides a good methodology to do this [1]. The need is more
strong in geotechnical engineering, because natural materials,
from which dams, retaining walls and breakwaters are made, ex-
hibit more and larger uncertainties than in structural engineering
obviously. Duncan [2] has pointed out that the reliability analysis
offers a useful supplement to conventional stability analyses, be-
cause the resultant reliability index contains more information
than the deterministic safety factor.

In reliability analysis, the performance of a structure or any
other system is governed by a limit state function (LSF) or per-
formance function g(x) and x x xx [ , , ]n

T
1 2= ⋯ is the random

variable vector, representing uncertain quantities. g(x)r0 denotes
the failure domain. The probability of failure is expressed as a
multi-dimensional integral of the joint probability density func-
tion over the failure domain. Difficulty in computing this multi-
dimensional integral has led to various approximation methods.

The first order reliability method (FORM) obtains the approximate
solution by the linear expansion of g(x)¼0 at the design point xn,
which is the most likely failure point. The second order reliability
method (SORM) obtains the approximate solution by expanding g
(x)¼0 at xn with the second order effects (the curvatures)
considered.

In practice, g(x) is usually implicit and must be solved using
structural/mechanical analysis. For example, in geotechnical en-
gineering, the limit state function of slope stability is usually de-
fined as g(x)¼Fs(x)�1.0, where Fs(x) is the factor of safety calcu-
lated by the limit equilibrium method (LEM) or the strength re-
duction method (SRM) based on the finite element method (FEM)/
finite difference method (FDM). Here Fs(x) is implicit and then g(x)
is implicit, which requires a considerable amount of computation
cost for every analysis. In this case, FORM/SORM are not directly
applicable and Monte Carlo simulation (MCS) seems to be suitable.
The advantages of MCS are obvious, but an innate disadvantage of
it is the formidable computational effort with tens to hundreds of
thousands sampling cycles. To overcome this disadvantage, nu-
merous variance reduction techniques have been proposed, such
as importance sampling [3] and directional simulation [4]. How-
ever, simulation methods even with importance sampling
schemes are time-consuming and impractical to problems invol-
ving low probability of failure or the problems that require a
considerable amount of computation in each sampling cycle, such
as slope reliability analysis in this paper.
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Another kind of methodologies, which may not be as accurate
as the above methods but is nevertheless feasible for a wider
spectrum of problem, is the surrogate model methods. In the
surrogate model methods, an explicit function intended to sub-
stitute the implicit performance function is fitted through planed
or random samples and the failure probability of the explicit
function replace that of the actual implicit performance function.
Response surface method (RSM) [5] and Kriging model [6] are
such methods.

In RSM, a polynomial function is usually used as a surrogate
model to approximate the unknown implicit performance func-
tion. Xu and Low [7] utilized RSM combined with FEM to calculate
the reliability index of slopes and demonstrated the feasibility of
using surrogate models in slope reliability analysis. However,
Kaymaz and McMahon [8] reported that conventional RSM re-
quired large computational efforts and showed loss of accuracy in
the cases of problems exhibiting acute nonlinearity.

The Kriging model is an alternative surrogate model that was
introduced by Sacks et al. [6] and is mainly used to solve de-
terministic optimization problems [9]. Recently, the Kriging model
was applied to structural reliability analysis [10]. Kaymaz [10]
computed the reliability index for assumed performance functions
rather than real structures using DACE (design and analysis of
computer experiments) � a Kriging MATLAB toolbox developed
by Lophaven [11]. Gaspar et al. [12] pointed out that the Kriging
model can provide significantly more accurate failure probability
predictions as compared with the polynomial regression models.
Their interpolation capability and flexibility or local adaptability
have shown to be important features for structural reliability
analysis problems.

When constructing a Kriging model, one should first determine
values of some correlation parameters, θ. Their values have great
effect on the performance of the Kriging model [10]. In DACE, the
pattern search method was utilized to find the optimal values of θ.
However, this method tends to become trapped in local minima,
and the solution is greatly affected by the given initial value [13].
Therefore, Luo et al. [13] used the artificial bee colony algorithm to
optimize θ and You and Jia [14] utilized the genetic algorithm.

In the present study, particle swarm optimization (PSO) algo-
rithm is introduced into Kriging modeling process to guarantee
the optimal correlation parameters under any initial conditions. A
typical example is given to validate the good curve fitting perfor-
mance of PSO-Kriging model. In reliability analysis, cumulative
formation of repeatedly using sampling points obtained in pre-
vious iterations is introduced into PSO-Kriging. One explicit non-
linear limit-state function example is selected to validate the ac-
curacy and efficiency of the cumulative PSO-Kriging. Finally, the
algorithm is employed in slope reliability analyses, including re-
liability analysis of a nuclear power plant breakwater.

2. Adaption of Kriging model

2.1. Kriging theory

Kriging is a statistical surrogate model that can be used to
approximate the input-output function on its input space based on
a small initial design of experiments (DOE). The Kriging model
consists of a Gaussian process that can be expressed, for any input
vector Rx n∈ , as

y m zx x x( ) ( , ) ( ) (1)β^ = +

where m(∙) is an optional regression model estimated from avail-
able data and expressed as a linear combination of p chosen
polynomial functions fj(∙) in DACE,

m fx x f x( , ) ( ) ( )
(2)j

p

j j
T

1

∑ ββ β= =
=

The coefficients β¼[β1, …, βp]T are regression parameters. The
random process z(∙) is the stochastic error and assumed to have
zero mean and covariance between z(ω) and z(x) as follows,

z z Rx xcov( ( ), ( )) ( , ) (3)2σω ω=

where s2 is the process variance and R(∙,∙) is a parametric corre-
lation function. Like x, ω is also an input vector and Rnω ∈ .
Several correlation functions are available in the literature. Kay-
maz [10] tested three types of correlation functions, i.e., exponen-
tial, linear and Gauss and concluded that the Gauss correlation
function is more suitable for the problems having nonlinear limit
state functions. In this study, the Gaussian correlation function is
adopted,

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟R xx( , ) exp ( )

(4)i

n

i i i
1

2∑ θ ωω = − −
=

where θi are scale factors whose estimation is described in the
following.

Suppose S¼[s1, …, sm]T is a set of m design sites and Y¼[y1, …,
ym] is the corresponding response set. Define RR ( )kl m m= × as the
correlation matrix of stochastic-process between z's at design sites
S and R R s s( , ),kl k l= k l m, 1, ,= ⋯ . Further define ( )FF kj m p

=
×

and

Fkj¼ fj(sk). For any given ( , , )n1θ θθ = ⋯ , the generalized least square

solutions for ( ), , p1β ββ = ⋯ and s2 are as follows.

F R F F R Y( ) (5)T T1 1 1β̂ = − − −

( ) ( )m
Y F R Y F

1
(6)

T2 1σ β̂ β̂^ = − −−

As a Gaussian process, the optimal coefficients θ⁎ of the corre-
lation function solves

{ }Rmin ( ) (7)
m
1 2φ σθ ≡

θ

where R is the determinant of R. This definition of θ⁎ corresponds
to maximum likelihood estimation [15]. Once θ⁎ is obtained, the
Kriging surrogate model based on m design sites S is as follows,

( )y x f x r x R Y F( ) ( ) ( ) (8)
T T 1β̂ β̂^ = + −−

where R Rr x x s x s( ) [ ( , ), , ( , )]m
T

1= ⋯ is the correlation matrix of
stochastic-process between z's at design sites S and the untried
point x.

It has been proved that if the optimal correlation parameters θ⁎

in the maximum likelihood sense can be guaranteed under any
initial conditions, the optimal unbiased characteristic for the Kri-
ging prediction can also be assured [11]. In DACE, the pattern
search method was used to find θ⁎. However, this method could
not guarantee to find the optimal values of θ under any initial
conditions, which will affect the performance of the Kriging model
[13]. Therefore, Luo et al. [13] used the artificial bee colony algo-
rithm to optimize θ and You and Jia [14] utilized the genetic al-
gorithm. In this study, PSO, an efficient global optimization algo-
rithm, was used to search θ⁎.

2.2. PSO

Particle swarm optimization (PSO), which is based on a social-
psychological model, is one of the modern heuristic algorithms for
optimization [16]. In PSO, the so-called swarm is composed of a set
of particles, which move in the search space of an optimization
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