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a b s t r a c t

Different importance measures exist in the literature, aiming to quantify the contributions of model
inputs to the output uncertainty. Among them, the moment-independent importance measures consider
the entire model output without dependence on any of its particular moments (e.g., variance), and have
attracted growing attention among both academics and practitioners. However, until now robust and
efficient computational methods for moment-independent importance measures are unavailable in the
literature. To properly address this issue, a new computational method based on sparse grid integration
(SGI) is proposed to perform moment-independent importance analysis in an efficient framework. In the
proposed method, SGI is combined with the moment method to obtain the conditional and uncondi-
tional distributions of the model output, which are further used to estimate the moment-independent
importance measures. The proposed method makes full use of the advantages of the SGI technique, and
is easy to implement. Numerical and engineering examples are studied in this work and the results have
demonstrated that the proposed method is feasible and applicable for practical use.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

As the complexity of mathematical models in the engineering
keeps increasing, it is necessary to take all the inputs into con-
sideration thoroughly and find which of them are more important
to the model output [1,2]. Global sensitivity analysis is such a tool
to study “how uncertainty in the output of a model (numerical or
otherwise) can be apportioned to different sources of uncertainty in
the model input factors” [3]. Global sensitivity indices are also
known as importance measures, which generally include non-
parametric techniques [4], variance based methods studied by
Sobol [5], Rabitz and Alis [6], Saltelli et al. [7,8], Frey and Patil [9],
and moment-independent approaches proposed by Borgonovo
[10–13], Liu and Homma [14]. Saltelli [3] underlined that an im-
portance measure should satisfy the requirement of being “global,
quantitative, and model free”. Borgonovo [10] extended Saltelli's
three requirements by adding “moment independent”, and pro-
posed a new importance measure which looks at the influence of
input uncertainty on the entire output distribution without re-
ference to a specific moment of the output. In a similar manner,
Liu and Homma [14] proposed another moment-independent
importance measure, which describes the contribution of the

input uncertainty on the cumulative distribution function (CDF) of
the model output, while Borgonovo's importance measure studies
the contribution on the probability density function (PDF) of the
model output.

A key concern in performing importance analysis is to improve
the computational efficiency [15], i.e. to obtain results with a
modest number of model evaluations, especially in engineering
cases where the models involved usually take a long processing
time. Numerical simulation methods have been adopted by Bor-
gonovo [10], Liu and Homma [14,16] to obtain the two moment-
independent importance measures proposed by them respectively,
of which the computational burden is considerably large as double
loop samplings are involved. In this respect, more efficient algo-
rithms should be developed. According to the work by Liu and
Homma [16], the calculation of the two importance measures can
be, as a matter of fact, transformed into calculations of CDFs.
Simply speaking, once the unconditional and conditional CDFs of
the model output are obtained, both the two moment-in-
dependent importance measures can be readily obtained.

In this work, we develop a new method to obtain the two
moment-independent importance measures by using the sparse
grid integration (SGI) technique. The sparse grid technique [17],
which is based on one-dimensional formulas and then extended to
higher dimensions, has been extensively utilized for high dimen-
sional multivariate integration [18], as well as interpolation [19].
To a certain extent, this technique avoids the “curse of dimension”
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of conventional integration algorithms meaning that the compu-
tational cost grows exponentially with the dimension of the pro-
blem. In the SGI technique, multivariate quadrature formulas are
constructed with combinations of tensor products of suitable one-
dimensional formulas, thus the function evaluations needed and
the numerical accuracy become independent of the dimension of
the problem up to logarithmic factors. Existing literature has re-
ported the high efficiency and accuracy of sparse grid applications.
The SGI technique is combined with moment methods [26–28] in
the proposed framework, where the first four moments of func-
tions will be estimated by SGI and further used to obtain the un-
conditional and conditional CDFs of the model output. The ob-
tained CDFs will be finally utilized to calculate the importance
measures.

The remainder of the paper is organized as follows. Section 2
reviews the definitions of the two moment-independent im-
portance measures. This is followed by a brief introduction of the
mathematical formulas of the SGI technique in Section 3. In Sec-
tion 4, we propose a new method based on SGI to obtain the
moment-independent importance measures more efficiently. In
Section 5, numerical and engineering examples are presented to
demonstrate the feasibility of the proposed method. Finally, con-
clusions of this work are highlighted in Section 6.

2. Two moment-independent importance measures

2.1. Definitions

Suppose the model is denoted by XY g ( )= , where Y is the
model output, and X X X X[ , , , ]d

T
1 2= … (d is the number of inputs)

is the set of uncertain inputs. The uncertainties of the inputs are
represented by probability distributions. The unconditional PDF
and CDF of Y are denoted as f y( )Y and F y( )Y , respectively. The
conditional PDF and CDF of Y are denoted as f y( )Y Xi| and F y( )Y Xi| ,

which are obtained by fixing the input of interest Xi at its reali-
zation xi

⁎ generated from its distribution. The conditional and
unconditional distribution functions of the output are depicted in
Fig. 1.

Borgonovo [10] proposed his importance measure by con-
sidering the contribution of inputs to the PDF of the model output.
The shift between f y( )Y and f y( )Y Xi| is measured by the area s X( )i

closed by the two PDFs, which is given as follows:

s X f y f y y( ) ( ) ( ) d (1)i Y Y Xi∫= | − ||

The expected shift can be obtained by varying the value of Xi

over its distribution range, i.e.

E s X f x s X x[ ( )] ( ) ( ) d (2)X i X i i ii i∫=

where f x( )X ii is the marginal PDF of Xi.
Then Borgonovo's importance measure is defined as [10]

E s X[ ( )] (3)i X i
1
2 iδ =

In a similar manner, Liu and Homma [14] proposed a new
moment-independent importance measure concerning the CDF of
model output. The deviation of F y( )Y Xi| from F y( )Y is measured by
using the area A X( )i closed by the two CDFs, and can be calculated
as

A X F y F y y( ) ( ) ( ) d (4)i Y Y Xi∫= | − ||

The expected deviation of F y( )Y Xi| from F y( )Y can be obtained as

E A X f x A X x[ ( )] ( ) ( ) d (5)X i X i i ii i∫=

E A X[ ( )]X ii can be used to illustrate the influence of the input Xi

on the output distribution. Furthermore, for a general model of
which the unconditional expectation of the output E Y( ) is not
equal to 0, Liu and Homma defined that the CDF based sensitivity
indicator, Si

CDF( ) , can be normalized as follows:

S
E A X

E Y

[ ( )]

( ) (6)i
CDF X i( ) i=

| |

For models of which E Y( ) is equal to 0, we can compare the
influences of the input variables on the output CDF by directly
using E A X[ ( )]X ii . Both iδ and Si

CDF( ) evaluate the influence of the
entire distribution of the input Xi on that of the model output Y ,
except that the former focuses on the PDF of output while the
latter on the CDF. For both measures, the effect of Xi on the output
uncertainty is estimated by varying all the other inputs over their
variation range. The two moment-independent importance mea-
sures represent the expected shift in the decision maker’s view on
the output uncertainty provoked by Xi. The inputs with larger
values of iδ or Si

CDF( ) will be associated with higher importance,
indicating these inputs should be paid more attention to if we
want to modify the performance of the model. In fact, the two
measures work regardless of whether the model is linear or
nonlinear, additive or nonadditive, and can be easily extended to a
group of inputs, for which more detailed information can be found
in the work of Borgonovo [10,11], Liu and Homma [14].

2.2. Computational issues about the two measures

Firstly, let us talk about how to obtain the value of iδ . It can be
seen from Eqs. (1) and (2) that the calculation of iδ includes two
major parts, i.e. the first would be to get the unconditional and
conditional PDFs of the output to obtain s X( )i , and the second is to
calculate the expectation of s X( )i . Now we describe the compu-
tational method utilized by Borgonovo [10] to obtain iδ , which
generally can be viewed as a double-loop simulation method. First,
the unconditional PDF of output, f y( )Y , is obtained by uncertainty
propagation, and varying the inputs over their variation range.
Second, one generates a value for Xi, namely xi

1 sampled from
f x( )X ii . Given this value, the conditional PDF of output, f y( )Y Xi| , is

obtained by propagating uncertainty in the model fixing X xi i
1= .

Then s x( )i
1 is computed from the numerical integration of the

absolute value of the difference between f y( )Y Xi| and f y( )Y . Repeat
the procedure for a certain number of times, iδ can be finally es-
timated. In fact, the calculation of Si

CDF( ) can be implemented in aFig. 1. Unconditional and conditional distribution functions of the model output.
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