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a b s t r a c t

Spectral analysis is a classical tool for the structural analysis of structures subjected to random excita-
tions. The most common application of spectral analysis is the determination of the steady-state second
order cumulant of a linear oscillator, under the action of a stationary loading prescribed by means of its
power spectral density. There exists however a broad variety of such similar problems, extending the
concept to multi degree-of-freedom systems, non Gaussian excitation, slightly nonlinear oscillators or
even transient excitations. In this wide class of problems, the cumulants of the response are obtained as
the result of the integral of corresponding spectra over the frequency space, which is possibly multi-
dimensional. Application of standard numerical integration techniques may be prohibitive, a reason why
the spectral approach is often left aside. Besides, many engineering problems involve a clear timescale
separation, usually of those pertaining to the loading and to the mechanical behavior of the system. In
these problems, a proper consideration of the timescale separation results in dropping the order of in-
tegration by one, at least. This offers the possibility to derive analytical solutions, whenever the order of
integration drops to zero, or to make numerical integration competitive. The paper presents this general
method, together with some applications in wind and marine engineering.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Many engineering applications are based on the input/output re-
presentation of a system, see Fig. 1(a), which is well suited to study
the stochastic response of deterministic systems to random input.
There is a wide variety of such applications in the various fields of
engineering [1–4] among which classical problems of structural and
mechanical applications such as the random vibrations of aircraft and
spaceships in aerospace engineering, the vibrations of mechanical
components [5], the response of civil structures to seismic [6], wind
[7] or wave loading [8]. Although the concepts developed in the paper
are not limited to the latter domains, the state-of-the-art references
are mainly borrowed from structural dynamics, which also serves as
the major field of application for the illustrations given in the paper.
In many of these applications the timescales T{ }⋆ associated with the
system are significantly different from those t{ }⋆ of the loading (in-
put) so that the response turns out to be a composition of compo-
nents with different timescales. The cases where t T{ } { }≪⋆ ⋆ or
T t{ } { }≪⋆ ⋆ are the ground motivation for this paper.

Traditional simulation techniques are rather inefficient in sol-
ving these kinds of problems as they would have to simulta-
neously resolve the different scales, which translates in very long
simulations with very short timesteps [9,10].

Alternatively stochastic spectral analysis appears as an ap-
pealing tool to solve these problems. Indeed, the loading is usually
given with a spectral representation, i.e. a set of spectra defined on
multidimensional frequency spaces. Among them, the well-known
power spectral density, defined for ω ∈ , represents the dis-
tribution of the second cumulant (the variance) over the frequency
domain. More generally, the jth-order spectrum represents the
distribution of the jth stationary cumulant over a frequency do-
main j 1− . The objective of a spectral analysis is to determine the
spectra of the response in terms of those of the input and even-
tually integrate them in the corresponding frequency spaces in
order to determine the cumulants of the response. Spectral ana-
lysis develops in various versions: (i) the Gaussian and the non-
Gaussian versions, i.e. limited to statistical order 2 or not, e.g.
[11–15], (ii) the single degree-of-freedom (SDOF) and the multiple
degree-of-freedom (MDOF) versions, the latter being well known
for the second order [5,7] and theoretically established for higher
order analysis [13,16], (iii) the steady-state response analysis, as in
most common applications, but also with evolutionary stochastic
analyses, a concept formalized by Priestley [17], but that still re-
ceives much interest [18], especially in seismic engineering [19,20]
and (iv) although the concept of spectral analysis hinges on the
underlying assumptions of linearity and of the superposition
principle, both the stochastic linearization [21] (as well as its
higher order generalizations [22–24]) and the Volterra series
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model [25–27] are interesting ways to extend its domain of ap-
plicability to systems with mild nonlinearities. In all these versions
of the spectral analysis, a canonical form for the jth order spec-
trum of the response (or contribution thereof in the nonlinear
case) is

( ) ( ) ( )S K S (1)j j jx pω ω ω=

where { , , }j j1 1ω ω ω= … − with j 2≥ gathers the independent

variables of the frequency space, ( )K jω is a frequency kernel

function and ( )S jp ω and ( )S jx ω respectively stand for the jth-order
spectra of the loading and of the response. A modified version,
adding time t as an additional independent variable, is required in
case of evolutionary spectrum [19]. The spectral analysis then
consists in the determination of



dk S ( )
(2)

j j jx

j 1

∫ ∫ ω ω= ⋯
−

which represents the jth cumulant of the response (or a con-
tribution thereof in the nonlinear case). Examples of such kernels
are sketched in Fig. 1(b and c).

The existence of multiple timescales in the response translates
into the existence of several well-distinct peaks in the spectra, see
Fig. 1(b and c). To handle multiple timescales in the response is
thus less problematic than in a crude Monte Carlo simulation.
Indeed, the spectral analysis smartly solves the possible issue with
an adequate distribution of integration points necessary to de-
termine k j in (2). Additionally to those used to properly capture

the loading ( )S jp ω , they have to be distributed in tiny zones

around the poles of the kernel ( )K jω , i.e. the natural frequencies in
case of a linear system.

For j¼2, some authors avoid the difficulty to justify the trun-
cation of the domain of integration with a suitable change of
variable, mapping the infinite frequency domain  onto a finite
interval one [28]. It seems that the concept could be extended to
higher dimensional integration ( j 2> ). In other contributions, ro-
bust adaptive quadrature schemes [29,30] provide accurate results
with limited computational investment, especially if the known
location of the resonance peaks is considered to initiate the
iterative numerical integration. Although adaptive quadrature is
extended to high-dimensional integration [31,32], integration of
high-dimensional spectra such as the bispectrum (j¼3) and the
trispectrum (j¼4) has been reported to require excessively large
computation times [33,34], mainly because integration in higher
dimensions actually requires an exponentially growing number of
integration points. Monte Carlo sampling techniques [9] could
help accelerating the numerical integration in high-dimensional
spaces, but it still requires a tremendous amount of integration
points, even if cut by a large factor compared to adaptive quad-
rature. The end pursued in this paper is to provide, thanks to a

timescale separation technique, simplified expressions for these
integrals.

Evidences of excessively large computation times trigger the
questioning on the applicability of the spectral analysis up to a
large order, say fourth order, for large systems. By large systems,
we mean those who require a complex finite element modeling
with a large number k of DOFs in which case the establishment of
the spectral matrix of the loading requires a significant time per
integration point jω . This number is of order 106 today. The larger
the size k k× ⋯ × (j times) of that matrix, the worse, of course.
Linear systems with a large number of DOFs are analyzed in their
modal basis, in which case (1) represents a modal analysis and the
size of matrices Sp and Sx drops to a few tens or hundreds per
dimension. The projection of the spectral representation of the
loading (input) in the modal basis, i.e. the determination of ( )S jp ω ,
definitely represents the most important part of the computa-
tional burden. Indeed, this operation requires the projection of
costly multidimensional nodal matrices. Further observing that
this operation has to be repeated for a large number of integration
points jω , this explains why usage of a modal basis reduction only
partly solves the computational issue, and thus why only the
theoretical setting of the non-Gaussian spectral analysis that was
extensively studied in the mid 1990s (e.g. [11,35,15,36]) is practi-
cally limited to structures with very few DOFs ([37]). On the other
hand, nonlinear systems with a large number of DOFs are usually
analyzed by means of model reduction techniques or statistical
linearization concepts, in which case a linear modal analysis fol-
lows, which extends the validity of the above observation.

The second-order spectral analysis is now implemented in
many structural analysis softwares, be they commercial or not.
Large power spectral density matrices of loading are projected in
the modal space and the resulting spectra are integrated with
accurate numerical methods. Although not completed with a
simple click yet, these operations necessitate reasonable compu-
tational times, thanks to the resources available on today's per-
sonal computers. Even though the number of transistors on a
micro-processor chip doubles every 18 months according to
Moore's law, acceptable computational times for the third- and the
fourth-order analysis of large systems is not to be expected in a
near future, at least with a crude application of (2). Looking
backward in time however reveals interesting perspectives. In
1961, driven by the need to provide an efficient way of calculating
the second- order response of structures subjected to buffeting
forces (what is actually rather fast today), Davenport suggested to
decompose the response in two components, the background and
resonant components [38]. In that approach, the number of in-
tegration points thus dropped to the sole natural frequencies of
the (possibly very large) structural model. With the benefit of
hindsight, we can see this method as the leading order solution of
a multiple timescale approach, in which the slow timescale related
to the wind loading activates the fast structural dynamic responses
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Fig. 1. (a) Input/output representation of a system; (b and c) examples of kernels ( )K jω encountered in spectral analysis: second- and third-order stationary responses.

V. Denoël / Probabilistic Engineering Mechanics 39 (2015) 69–8670



Download English Version:

https://daneshyari.com/en/article/806033

Download Persian Version:

https://daneshyari.com/article/806033

Daneshyari.com

https://daneshyari.com/en/article/806033
https://daneshyari.com/article/806033
https://daneshyari.com

