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Abstract: At small dimensionless timescales 2(= / )T tD H , where t  is the time, H  is the depth of the channel and D  is the 

molecular diffusion coefficient, the mean transverse concentration along the longitudinal direction is not in a Gaussian distribution and 
the transverse concentration distribution is nonuniform. However, previous studies found different dimensionless timescales in the 
early stage, which is not verified experimentally due to the demanding experimental requirements. In this letter, a stochastic method 
is employed to simulate the early stage of the longitudinal transport when the Peclet number is large. It is shown that the timescale for 
the transverse distribution to approach uniformity is = 0.5T , which is also the timescale for the dimensionless temporal longitudinal 

dispersion coefficient to reach its asymptotic value, the timescale for the longitudinal distribution to approach a Gaussian distribution is 
= 1.0T , which is also the timescale for the dimensionless history mean longitudinal dispersion coefficient to reach its asymptotic 

value. 
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 The longitudinal dispersion is an important issue 
in studying the scalar transport in flow systems (e.g., 
the open-channel flow and the pipe flow)[1,2]. The 
longitudinal dispersions share the same behavior 
although the cross sections of the flow systems may 
be different (e.g., rectangular and circular sections), 
thus it is helpful to study the longitudinal dispersion in 
the laminar open-channel flow. When the time scale is 
large, the longitudinal dispersion coefficient, which 
reflects the spreading rate in the longitudinal direction, 
can be solved easily. Using some reasonable assum- 
ptions (e.g., the longitudinal diffusion can be omitted 
when the Peclet number ( )Pe  is large), Chatwin and 

Sullivan[1] found that the dispersion coefficient for the 
laminar channel flow can be expressed as =k

2 22 /(105 )zH U D , where H  is the channel depth, U  

is the  mean velocity and zD  the transverse diffu- 

sion coefficient. However, the formula given by 
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Chatwin and Sullivan[1] can only be used at a large 
timescale when the transverse concentration distribu- 
tion is uniform and the longitudinal concentration is in 
a Gaussian distribution. This is because in the early 
stage, the actual problems are as follows: (1) the 
transverse concentration distribution is nonuniform, (2) 
the longitudinal dispersion coefficient is not a constant 
value and (3) the longitudinal mean transverse concen- 
tration is not in a Gaussian distribution, with absolute 
skewness 2 3

3 2(= / )    being not zero, where n  is 

the thn  integral central moment of c  
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where gx  is the location of the centre of gravity. Thus, 

the initial stage of the scalar transport was widely 
studied[3-5]. However, the timescales vary from one 
study to another, and without experiments to verify- 
their results due to the demanding experimental condi- 
tions. One might be confused in the face of many 
conflict results. Therefore, the study of the dimension- 
less timescales could offer an alternative simple stan- 
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dard to evaluate the previous theoretical studies. 
In this letter, we concentrate on the developments 

of the transverse uniformity index ( )UI , the dimen- 

sionless history mean longitudinal dispersion coeffi- 
cient ( )K , the dimensionless temporal longitudinal 

dispersion coefficient ( )tK  and the absolute skewness 

of longitudinal concentration distribution ( ) , without 

touching other indices, such as the peak concentration 
and the length of the solute. 

    The random walk particle method (RWPM) is 
used here. We regard the concentration as a large 
number of independent particles[6]. Each particle's 
position can be updated by an advection displacement 
(caused by the local velocity) superposed by a random 
displacement. Thus, after  , the new position of the 
particle at tX , is given as follows 
 

1/ 2
+ = + + (2 )t t P D  X X u

                                       

(2) 
 

where u  is ( ,0)tu  for one-dimensional laminar 

flow, D  is the diffusion matrix and P  is the 
probability matrix. Here, the scalar transport is simu- 
lated for = 100Pe , which is common in practice. We 
consider 1 000 particles  distributed uniformly in the 
transverse direction, from = 0 mz  to = 2.5z 

410 m . The time step is 10−4 s and = =x zD D
210 m / s . 

    In most of the previous studies, the transverse 
concentration distribution is assumed as uniform to 
solve the ADE[1]. Chatwin[3] suggested that this 
assumption is right provided > 0.25T , whereas the 
results of Bailey and Gogarty[4] and Wu and Chen[5] 
showed that the time to approach the transverse 
uniformity is > 0.69T  and >10T  ( 2T = tD/R for a 
pipe flow, where R  is the radius), respectively. 
    Here, the uniformities in three typical domains are 
analysed. The three domains are ( 0.1 , +c g gp x x 

0.1 ) , ( 1.1 , 0.9 )u g gp x x    and ( +d gp x

0.9 , +1.1 )gx   where 1/ 2
2=   . The transverse 

uniformity index ( )UI  is defined as = /lUI l , 

where 1 2

=1

= ( )
tN

l t i
i

N l l   is the standard deviation 

of the length that each particle occupies, tN  is the 

number of the particles in the region, il  is the length 

that the thi  particle occupies and (= / )tl H N  is the 

mean value of il . il  can be obtained as: 
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where 1 2 tNz z z      . For an ideal uniformity distri- 

bution, the value of UI  should be zero (i.e., =il l , 

= 1,2,i    ). However,it is not zero in practice because 
of the randomness of the molecular transport. 
 
 
 
 
 
 
 
 
 
 
 

Fig.1 Development of transverse uniformity index ( )UI  
 

As can be seen from Fig.1, the values of UI in 
three domains decrease and approach the asymptotic 
value of 0.7 at around = 0.5T , i.e., the time to 
approach the transverse uniformity is = 0.5T . 

Besides, the longitudinal dispersion coefficient is 
time dependent in the early stage. Thus, some unreaso- 
nable explanations[7] were given to describe the results 
at the near-source region or in the early stage. Gill and 
Sankarasubramanian[8] shows that the longitudinal 
dispersion coefficient increases with time and reaches 
its asymptotic value at = 0.1- 0.2T . The numerical 
result of Gill and Sankarasubramanian[9] shows that the 
longitudinal dispersion coefficient in a pipe reaches its 
asymptotic value at = 0.5T  and that the timescale is 
independent of the initial transverse distribution. 

In this letter, the longitudinal dispersion coeffi- 
cient is discussed in two aspects: the dimensionless 
history mean longitudinal transport coefficient ( )K  

and the dimensionless temporal longitudinal transport 
coefficient ( )tK . K  is calculated as follows 
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whereas tK  is calculated as 
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The developments of K  and tK  (i.e., the curve 

( Ad  and zD )) in Fig.2 show that the values of K  

and tK  increase to their asymptotic values at =1.0T  

and = 0.5T , respectively. The results by the Ad  and 
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