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h i g h l i g h t s

• We propose a simple filtering method to improve classification precision of images.
• It focuses on classification probabilities and discards low confidence objects.
• It successfully resolved the in situ fine scale distribution patterns of plankton.
• It requires very limited manual identification work.
• It is applicable to all machine learning methods.

a r t i c l e i n f o

Article history:
Received 1 August 2015
Received in revised form
13 April 2016
Accepted 16 April 2016
Available online xxxx

Keywords:
Imaging system
ISIIS
Automatic classification

a b s t r a c t

Imaging systems were developed to explore the fine scale dis-
tributions of plankton (<10 m), but they generate huge datasets
that are still a challenge to handle rapidly and accurately. So far,
imaged organisms have been either classified manually or pre-
classified by a computer program and later verified by human
operators. In this paper, we post-process a computer-generated
classification, obtained with the common ZooProcess and Plank-
tonIdentifier toolchain developed for the ZooScan, and testwhether
the same ecological conclusions can be reached with this fully au-
tomatic dataset and with a reference, manually sorted, dataset.
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The Random Forest classifier outputs the probabilities that each
object belongs in each class and we discard the objects with un-
certain predictions, i.e. under a probability threshold defined based
on a 1% error rate in a self-prediction of the learning set. Keeping
only well-predicted objects enabled considerable improvements
in average precision, 84% for biological groups, at the cost of di-
minishing recall (by 39% on average). Overall, it increased accuracy
by 16%. For most groups, the automatically-predicted distributions
were comparable to the reference distributions and resulted in the
same size-spectra. Automatically-predicted distributions also re-
solved ecologically-relevant patterns, such as differences in abun-
dance across amesoscale front or fine-scale vertical shifts between
day and night. This post-processing method is tested on the clas-
sification of plankton images through Random Forest here, but is
based on basic features shared by all machine learning methods
and could thus be used in a broad range of applications.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

From the centimetre to kilometre-scales, hydrodynamics, predator–prey interactions and be-
haviour strongly structure the patchy distributions of planktonic organisms in pelagic environments
(Davis et al., 1992; Pinel-Alloul, 1995; Lough and Broughton, 2007). At mesoscales (10–100 km) and
submesoscales (<10 km), plankton distributions are primarily determined by hydrological structures
like fronts and eddies (Belkin, 2002; Belkin et al., 2009; Luo et al., 2014). For example, convergent
flows at frontal features can increase primary production (Grimes and Finucane, 1991) and mechani-
cally concentrate organisms (Bakun, 2006; Olson et al., 1994). However, the influence of these struc-
tures may be counter-balanced by behaviour or other biotic processes. Indeed, at fine scale (<1 km),
diel vertical migrations can be a strong driver of plankton distributions (Benoit-Bird and McManus,
2012; Neilson and Perry, 1990). At microscales (<1–10 m), biotic interactions such as competition
and predation are likely to generate vertical gradients in the distribution of zooplankton. For exam-
ple, in Monterey Bay, predator avoidance is thought to vertically separate copepods, phytoplankton
thin layers, and gelatinous zooplankton predators (Greer et al., 2013). Off the coast of Massachusetts,
interactions between internal waves and foraging drive a temporary overlap between layers of high
copepod concentration and ichthyoplankton (Greer et al., 2014).

Historically, zooplankton and ichthyoplankton distributions have been sampled with pumps
(Herman et al., 1984) and regular or stratified plankton nets (e.g. regular: WP2, Bongo; e.g. stratified:
MOCNESS, BIONESS, MULTINET; Wiebe and Benfield, 2003). However, even depth-stratified nets
cannot typically resolve the fine and microscale processes at which biotic interactions occur, because
they usually sample (and integrate) over at least 10 m vertically and much more horizontally. While
pumps offer finer spatio-temporal resolution, they are often limited to surface layers (<10 m depth
— Boucher, 1984; sometimes down to 100m depth — Herman et al., 1984) and sample much smaller
volumes (on average 50–60 L min−1 vs. 7500 L min−1 for a small plankton net; Wiebe and Benfield,
2003).

In the last two decades, in situ imaging systems were developed with the aim of sampling mi-
croscale processes in the plankton and accelerating data processing using efficient automatic clas-
sification techniques (MacLeod et al., 2010; Wiebe and Benfield, 2003). Several imaging systems
have emerged, tackling different ecological questions by targeting different size spectra of organisms.
The Video Plankton Recorder (VPR; Benfield et al., 1996) and the Underwater Vision Profiler (UVP;
Picheral et al., 2010) sample particles and zooplankton. The Shadow Image Particle Profiling Evalua-
tion Recorder (SIPPER; Samson et al., 2001), the ZOOplankton VISualization imaging system (ZOOVIS;
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