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a b s t r a c t

We present an integrated framework for joint estimation and pur-
suit of dynamic features in the ocean, over large spatial scales
and with multiple collaborating vehicles relying on limited com-
munications. Our approach uses ocean model predictions to de-
sign closed-loop networked control at short time scales, and the
primary innovation is to represent model uncertainty via a pro-
jection of ensemble forecasts into local linearized vehicle coor-
dinates. Based on this projection, we identify a stochastic linear
time-invariant model for estimation and control design. The
methodology accurately decomposes spatial and temporal vari-
ations, exploits coupling between sites along the feature, and
allows for advanced methods in communication-constrained
control. Simulations with three example datasets successfully
demonstrate the proof-of-concept.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The behavior of ocean fronts and similar structures such as plumes and filaments has long been of
interest to oceanographers (Gangopadhyay and Robinson, 2002; Ferrari, 2011). Recentmeasurements
in a front off Japan have revealed sub-mesoscale structure that figures unexpectedly large in the
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energy balance (D’Asaro et al., 2011). Fronts and plumes are implicated in foundational work on
Lagrangian coherent structures (Olascoaga and Haller, 2012), and can show dramatic physical,
chemical, and biological variability that is critical to understanding ocean–atmospheric coupling,
ecological systems, and pollution (Camilli et al., 2010; Farrell et al., 2005).

Despite continual advances in modeling of complex natural processes, ocean features at the
mesoscale and smaller remain challenging (Canuto and Dubovikov, 2005; Hanna and Yang, 2001),
and hence have emerged as a primary focus area for mobile sensing systems. Here, progress has
been rapid, e.g. Fiorelli et al. (2006) and Wang et al. (2009). Zhang et al. (2012b,a) carried out at-
sea experiments where measurements both drove trajectory decisions and triggered collection of
large samples. A single vehicle has successfully tracked a plankton bloom (Godin et al., 2011), while
a coordinated approach for a similar problem using a drifter and vehicle has been studied in Das
et al. (2012) and Graham et al. (2013). A collaborative control technique for tracking Lagrangian
coherent structures is presented in Michini et al. (2014), and a distributed approach for plume and
thermocline tracking is considered in Petillo et al. (2012). Supporting all these developments, basic
water properties are routinely measured today frommobile robots, while sophisticated chemical and
biological analyses in situ are becoming mature technologies, for example DNA probes (Scholin et al.,
2006) and mass spectrometers (Camilli et al., 2010). In turn, ocean modeling is becoming integrated
with real-time sampling systems, e.g., Willcox et al. (2001), Haley et al. (2009) and Smith et al. (2010),
and is increasingly taking on multi-disciplinary aspects (Stow et al., 2009). Non-cooperative path-
planning based on current forecasts has been studied extensively, for example by Smith et al. (2010)
and Lolla et al. (2012). Oceanmodel uncertainty predictions and communication constraints, however,
have not been a central focus in these works.

Already exploited regularly in the terrestrial and air domains, networks of mobile agents are an at-
tractivemeans for tracking and pursuit of dynamic processes overmixed spatial scales (Dunbabin and
Marques, 2012), although wireless communication inevitably brings fundamental challenges in con-
trol (Baillieul and Antsaklis, 2007). Underwater, wireless communication over distances beyond about
one hundred meters is made almost exclusively via acoustics, which suffer packet losses caused by
ambient noise, multipath, and other environmental conditions (Heidemann et al., 2012). This packet
loss, combined with low data rates and long delays, has limited the use of acoustic communications
in high-performance, real-time tasks. Our own experience with acoustic modems (Reed et al., 2013)
strongly suggests that control systemdesign should encompass communication limits from the begin-
ning. To this end, there has been considerable recentwork in the field of control under communication
constraints. Constructive results exist for lossy estimation (Sinopoli et al., 2004; Gupta et al., 2007),
lossy commands (Quevedo et al., 2011) andH∞ sampled-data control (Lall andDullerud, 2001).We ex-
tended thework of Imer et al. (2006) to the case of independentmulti-channel packet losses (Reed and
Hover, 2013); Imer’s dynamic programming approach results in a highly tractable recursion. These
principledmethods for networked control design, however, usually require linear time-invariant (LTI)
system representations.

In this paper, we combine the themes above to focus on tracking and pursuit of dynamic ocean
fronts bymultiple unmanned vehicles, posing the problem in such away as to accommodate themost
promising developments in communication-constrained feedback control. As diagrammed in Fig. 1,
our approach fits as an intermediary between high-bandwidth vehicle flight control (at the seconds
time scale) and lower-frequency procedures in numerical oceanmodeling, assimilation, and adaptive
sampling. Notably, we are using linearization for a completely different purpose here than the norm
in physical oceanography, where it has helped characterize instability and maximum sensitivity
directions through adjoint models (Moore et al., 2004). As described in full below, our approach
explicitly leverages ocean forecast ensembles, a projection onto vehicle coordinates, and stochastic system
identification, yielding a dynamics description that is directly suitable for control system design. These
elements enable a reactive control methodology for dynamically sampling the ocean, that may surpass
approaches used today. Looking forward,we hope that our frameworkmay provide a basis for tradeoff
studies in designing complex deployments.

We describe the overall technical framework in Section 2, with some additional background
comments on forecasting and linearization. Projection is detailed in Section 3, and the integration
of projection, system identification, estimation and control in Section 4. Projection and identification
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