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A B S T R A C T

The potential benefits of using a geometric mean method for computing a vulnerability index are presented using
both simulated variables as well as data from a Canadian coastal geodatabase (CanCoast). The assessment of
vulnerability of natural and built coastal infrastructure to sea level rise is used to demonstrate the advantages of
this method for climate change adaptation planning and decision-making. As with most real world datasets the
probability distribution of individual variables in CanCoast may be skewed; this can significantly impact the
resulting vulnerability index depending on the calculation method employed. The primary advantage of using a
geometric mean is that the index output will remain within the original range and maintain the distributional
characteristics of the input variables. This can reduce the need for subjective expert opinion in the process of
assessing the vulnerability index. A comparison of the resulting computation using both the Gornitz (1991)
method and the geometric mean is provided for the Atlantic Canada coastline.

1. Introduction

In the field of risk assessment, the term vulnerability has been
broadly applied and equated to concepts such as resilience, marginality,
susceptibility, adaptability, fragility, and risk (Liverman, 1990; IPCC,
2014a). It is an elusive term that continues to provide challenges in the
consistency of its application (Timmerman, 1981; Fussel and Klein,
2006). Nonetheless, the concept continues to be used and has recently
been described by the Intergovernmental Panel on Climate Change
(IPCC, 2014b) as:

“The propensity or predisposition to be adversely affected.
Vulnerability encompasses a variety of concepts and elements in-
cluding sensitivity or susceptibility to harm and lack of capacity to
cope and adapt.”

In coastal assessment research, numerous indices have been devised
to evaluate the vulnerability of a shoreline to the effects of climate
change (Preston et al., 2011; Ramieri et al., 2011; Abuodha and
Woodroffe, 2006.). Each index is a composite of multiple quantitative
and qualitative indicators that, via some formula and weighting, de-
livers a single numerical result that is indicative of coastal vulnerability
to a hazard (e.g. climate change). Regardless of the ambiguity sur-
rounding the term and the various methods of assessing it, the primary
purpose of a vulnerability assessment is to provide information that
assists in decision-making and coastal adaptation planning (McLaughlin
and Cooper, 2010; Smit and Wandel, 2006; Kelly and Adger, 2000).
One of the early methods in this area of research that has been broadly

adopted is the Gornitz (1991) Coastal Vulnerability Index (GVI) (Boruff
et al., 2005; Pendleton et al., 2004; Thieler and Hammer-Klose, 2000;
Shaw et al., 1998). The GVI method yields a vulnerability index for the
coastline segments within study extents but does not accurately re-
present the frequency distribution or range of the input variables. As a
result, researchers are then left to ordinate the index distribution into
vulnerability categories (e.g. low, medium and high vulnerability) for
graphical display (e.g. GIS output showing coastlines of varying degrees
of vulnerability) using either expert opinion or by splitting the data into
percentiles (Shaw et al., 1998).

Gibb et al. (1992) noted early on some deficiencies in using this
calculation, including its tendency to distort the output range and dis-
tribution of the final index. Despite these known deficiencies, the GVI
method is still commonly used in calculating a vulnerability index. In a
search of published literature over the period 2014–2017, approxi-
mately 30% of the papers on coastal vulnerability used the GVI calcu-
lation for aggregating vulnerability variables (for example: Ferreira
Silva et al., 2017; López Royo et al., 2016; Martínez-Graña et al., 2016;
Tano et al., 2016).

In addition to the impact on data distribution, it should also be
noted that Gornitz (1991) incorrectly describes GVI (Equation (1)) as
the square root of the geometric mean:

=

…GVI a * a * a
n

n1 2   
(1)

The GVI is more accurately described as the square root of the
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product of the variables (ai) divided by the number of variables (n) (or
as it is sometimes described, the square root of the product mean). The
true geometric mean (GM) is the nth root of the product of the variables
(a1 – an):

= …GM a * a * an1 2n    (2)

Due to the prevalence of GVI in the current literature, this paper
quantifies and compares the distributional impact of applying the GVI
and the GM to both simulated input variables and an existing dataset of
Canadian shoreline segments with environmental exposure variables
(sea level rise, wind speed, wave height, coastal materials, and change
in sea ice coverage). The importance of choosing an appropriate
methodology when calculating vulnerability indices for climate change
adaptation planning is discussed.

2. Methods and data

The following methodology will quantify and compare the dis-
tributional implications of the GVI and GM coastal vulnerability as-
sessment methods using simulated variables. This will enable us to
isolate the causes of observed differences in calculated vulnerability
index distributions. Both indices will then be applied to actual coastal
segment environmental variables to further demonstrate the “real-
world” implications of assigning coastal vulnerability using different
methods.

2.1. Simulated coastal segments

A model was written using R Statistical Software (R Core Team,
2016) to compare the resulting range and distribution characteristics
for two vulnerability indices (GVI and GM). For a total of 1000 simu-
lated coastal segments or data rows, scenarios using varying numbers of
randomly generated coastal variables (3, 7, 10, 25, 50, 100 and 200)
with means between 1 and 100 and a standard deviation of 1 were
created. Using the R cut () function to divide the distribution into 5
equal parts, the distribution of each variable was recoded to a scale of
1–5, with 5 representing the most vulnerable and 1 representing the
least vulnerable state. Each scenario was run a total of 30 times and the
skewness, kurtosis, mean, median and range of the resulting coastal
index distribution was captured for each run. The average for each
distributional statistic for all runs was then calculated for each model
scenario.

2.2. Application to a coastal dataset

The following is an applied example that compares the effects of
using the GVI and the GM on CanCoast (Shaw et al., 1998), a Canadian
coastal dataset. This dataset is a 1:50,000 scale dataset of the Canadian
coast with updated values of five environmental/exposure variables.
The variables used in this exercise are: predicted sea level change, wind
speed, wave height, coastal materials, and change in sea ice coverage.
The coastal materials dataset was already scored on an ordinal scale
(1–5 based on increasing erodibility), but it was necessary to score the
four other environmental datasets on an identical scale. The frequency
distributions of each of these four coastline variables were tested for
skewness and, if necessary, transformed prior to scoring so their dis-
tributions were approximately normal. Scoring of these four environ-
mental variables was achieved by dividing each variable range into five
equal intervals.

2.2.1. Sea level change
The regional projections of relative sea level (RSL) rise from the

IPCC Assessment Report 5 (AR5) include effects of steric and dynamic
changes, atmospheric loading, plus land ice, glacial isostatic adjustment
(GIA), and terrestrial water sources (IPCC, 2013). The steric and

dynamic changes were derived from 21 Atmosphere– Ocean General
Circulation Models (AOGCMs) from the Coupled Model Inter-
comparison Project, Phase 5 (CMIP5). A 1-degree resolution grid of
relative sea level change was calculated for all years between 2006 and
2100 for RCP4.5 and RCP8.5.

2.2.2. Wind speed and wave height
Modeled hindcasts of yearly maximum significant wave height

(1990–2014) and maximum wind speed (1990–2012) were used. Both
datasets were generated from IFREMER wave hindcasts using the
WAVEWATCH III model with wind data from NCEP Climate Forecast
System Reanalysis (CFSR) (Saha and Coauthors, 2010). Two high re-
solution (10min) grids of Atlantic and Pacific maximum modeled wind
speeds and maximum significant wave height were used for southern
Canadian coastal areas while a coarser (30min) worldwide grid was
used for the Arctic areas. From these datasets maximum significant
wave height over 25 years and maximum wind speed over 23 years
were calculated.

2.2.3. Coastal materials
The base layers from which the coastal materials layer were derived

were the Fulton surficial geology and the Wheeler bedrock geology,
both at scales of 1:25 million (Wheeler et al., 1996). Where the surficial
geology was greater in thickness than veneer, a score of 3–5 was as-
signed, with 5 being most erodible (muds, marine clay, materials that
will flow) and three being less erodible (sands, gravels). Where there
were surficial materials with a thickness of veneer or less, the bedrock
geology was used as the basis for the score. Scores based on bedrock
geology were assigned 2 if the geology was sedimentary, and 1 if ig-
neous or metamorphic (Dr. Gavin Manson, Natural Resources Canada,
Bedford Institute of Oceanography, Dartmouth, Nova Scotia, personal
communication, 2015).

2.2.4. Change in sea ice coverage
Sea ice data from the Canadian Ice Service were acquired for each of

the four regions (i.e. Atlantic, Eastern Arctic, Western Arctic and
Hudson Bay), representing percent ice coverage for each week over four
decades (1970s, 1980s, 1990, 2000s). For each region and decade, a
single dataset was calculated to represent the sum of all weeks with ice
coverage in excess of 50%, with a maximum possible score of 52 weeks
for each decade. To measure change in ice coverage, the summary sheet
from the 2000s was subtracted from the 1970s summary sheet. The
final dataset represents the number of weeks of change in ice coverage
greater than 50%. A positive number indicates a reduction in weeks of
ice coverage, a negative number an increase in ice coverage.

2.2.5. Assignment of vulnerability scores to coastal variables
Variable values were categorized on a scale of 1–5 (low risk to high

risk) (Table 1) by breaking the range into 5 equal divisions, except for
Coastal material which were already categorized on a 1 to 5 scale in
increasing erodibility.

3. Results

This section will provide an overview of the results using both si-
mulated and real world data sets. The section with simulated variables
will allow us to address the differences that result from the GVI and GM
methods. The section using the CanCoast geodatabase will demonstrate
the application of these approaches in Atlantic Canada.

3.1. GVI and GM comparison with simulated input variables

Using the simulated input variables as described in Section 2.1,
calculations comparing the influence of the number of variables on the
distributional output for both the GVI and the GM methods are pro-
vided in Table 2 and Fig. 1. The four key statistical measures chosen to
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