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a b s t r a c t

The fiber bundle model is widely used in probabilistic modeling of various phenomena across different
engineering fields, from network analysis to earthquake statistics. In structural strength analysis, this
model is an essential part of extreme value statistics that governs the left tail of the cumulative
probability density function of strength. Based on previous nano-mechanical arguments, the cumulative
probability distribution function of strength of each fiber constituting the bundle is assumed to exhibit a
power-law left tail. Each fiber (or element) of the bundle is supposed to be subjected to the same relative
displacement (parallel coupling). The constitutive equations describing various fibers are assumed to be
related by a radial affinity while no restrictions are placed on their particular form. It is demonstrated
that, even under these most general assumptions, the power-law left tail is preserved in the bundle and
the tail exponent of the bundle is the sum of the exponents of the power-law tails of all the fibers. The
results have significant implications for the statistical modeling of strength of quasibrittle structures.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Since the pioneering work by Peirce [1] in the 1920s, the study
of fiber bundle models has attracted an increasing attention by the
research community. This is due to its proven effectiveness in the
analysis of various phenomena across different engineering fields
– from material science to earthquake statistics, or from network
to traffic modeling, just to mention a few [2–12].

Recently, Kim et al. [2] applied the fiber bundle to study the
overloading failures in power grids. The load transfer of broken
fibers or nodes through the edges or links of the underlying
network was assumed to be governed by the local load-sharing
(LLS) rule [13–16].

The same load-sharing rule was adopted by Chakrabarti [3] for
the study of (global) traffic jam in a city network of roads. In this
case, for some special distributions of traffic handling capacities of
the roads, the application of the fiber bundle model let the
analytical study of the critical behavior of the jamming transition.

On parallel tracks, Moreno et al. [4] applied the fiber bundle
model to study the complex aftershocks sequences which occur
after earthquakes. Each element, an asperity or barrier, was
supposed to break because of static fatigue, transferring its stress
according to a local load-sharing rule and then regenerate.

In material science, the fiber bundle was extensively used as a
tool for studying important phenomena such as fracture, fatigue,
creep or thermally induced failure of brittle, ductile and quasi-
brittle materials [5–12].

Particularly important for structural strength is the asymptotic
behavior of the fiber bundle because it governs the extreme value
statistics of strength of engineering structures. This is essential for
safe design of aircraft, bridges, dams, nuclear structures and ships,
as well as microelectronic components and medical implants,
since the tolerable failure probability is extremely low, typically
Pf r10�6.

An early rigorous study of the cumulative probability distribu-
tion function (cdf) of the strength and of some asymptotic proper-
ties of a fiber bundle with brittle elements (called fibers) was
carried out by Daniels [17]. He derived an exact recursive formula
for computing the cdf regardless of the particular type of cdf of
individual fibers. He also demonstrated that, for the limit case in
which the number of fibers approaches infinity, the cdf of strength
tends to the Gaussian (or normal) distribution regardless of the cdf
of individual brittle fibers. Later, this property was also demon-
strated by different approaches by Galambos [18], Smith [19],
Sornette [20] and Le et al. [21].

The left tail of the strength distribution for bundles of brittle
fibers was studied by Harlow et al. [22] within the framework of
set theory. In their work, it was proven in detail that the left tail of
the cdf of strength of a fiber bundle is a power-law tail if the
elements exhibit a left power-law tail, although this property was
already implied in the pioneering work of Fisher and Tippet [23],
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in terms of the stability postulate of extreme value statistics.
Furthermore, Harlow et al. showed that the tail exponents of
brittle fibers are additive, i.e., the exponent of the bundle tail is the
sum of the exponents of the power-law tails of all its brittle fibers.

For brittle fibers, the same result was derived by Bažant and
Pang [24] in a simpler way using the recursive formula proposed
by Daniels [17]. Further, in their paper, the authors demonstrated
the presence of a power-law left tail and the additivity of the
exponents for ductile fibers. Then they coupled the fiber bundle
model to the weakest-link model to describe the multi-scale
transition of strength from the nanoscale to the macroscale. They
also pioneered the analysis of the reach of power-law tail and
showed the reach decreases by one order of magnitude for each
element in the bundle. A similar behavior was later demonstrated
by Le et al. [21] for fibers characterized by a bilinear stress–strain
curve with a gradual post-peak softening.

All the previous analyses of the asymptotic behavior of bundle
strength relied on the assumption of a particular constitutive
behavior of its elements. In the present work, the constitutive
equations describing each fiber are merely assumed to be related
by radial affinity while no assumptions are made on their
particular form. The cdf of strength of each fiber constituting the
bundle is assumed to exhibit a power-law left tail.

It is demonstrated that the power-law left tail is preserved in
the bundle. Moreover, it is shown that the exponent is the sum of
the exponents of the power-law of each fiber.

2. Preliminary considerations

In the bundle model, after one element fails, the load gets
redistributed among the other elements. The total load reduces to
zero when all the elements break but the maximum load is
reached when only a certain fraction of the elements is subjected
to the failure load. The load redistribution after a fiber breaks
depends on the load-sharing rule. Various rules have been
assumed in the literature, such as the load-sharing by the nearest
neighbors of the failing element in the bundle [13–17,25,26].

In the present work, all the fibers are supposed to be subjected
to the same relative displacement (note that the more general case
of proportional displacements can be transformed to this case).
Accordingly, the load-sharing rule is fully determined by the
constitutive behavior of the fibers.

The constitutive equations, si ¼ f iðεiÞ, describing the stress–
strain law of each ith fiber are supposed to be related by the
following affinity:

s0 ¼s0f ðεÞ ð1Þ

si ¼ sif βi
s0

si
ε

� �
ði¼ 1…nbÞ ð2Þ

Accordingly, Eq. (1) represents a reference curve while Eq. (2)
describes the behavior of each fiber. The parameter si is the
strength of the ith fiber, βi is a positive constant and nb is the
total number of fibers in the bundle. Also, f ðεÞA ½0;1� and it is
assumed to have piecewise C1-continuity in the domain of
interest.

It is worth noting that when βi ¼ 1, Eqs. (1) and (2) provide a
family of curves related by a radial scaling transformation. In case
βi ¼si=s0, one gets a vertical scaling. A similar transformation was
successfully applied within the framework of the microplane
model for the scaling of functions characterizing the constitutive
properties of quasibrittle materials [27]. As an example, Fig. 1
shows a family of s�ε curves describing a material exhibiting a
post-peak softening behavior.

Based on the present assumptions, once the reference curve is
defined, each fiber is fully characterized by its strength, si, and its
strain at peak, εni . Note also that no assumptions are made on the
particular stress–strain behavior of each fiber. This will guaran-
tee the generality of the results demonstrated in the following
sections.

3. Analysis of the left tail of the strength cdf of the fiber
bundle

Let us study the tail of the cdf of strength of the fiber bundle
model. In contrast to [13–17,25,26], the fibers are supposed to be
subjected to the same relative displacement while the load is
redistributed within the bundle according to the stress–strain law
of each fiber. A surprisingly simple property is demonstrated for
power-law tails. The power-laws are always preserved and their
exponents are additive. Specifically, if the cdf of strength of each of
nb fibers in a bundle has a power-law tail of exponent pi
(i¼ 1…nb), then the cdf of bundle strength has also a power-law
tail and its exponent is p¼∑nb

i ¼ 1pi.
For a brittle bundle, this remarkable property was proven by

induction based on the set theory [22,28]. Later it was also proven
more simply by Bažant and Pang [24,29] by means of asymptotic
expansion of Daniel's [17] exact recursive equation for the strength
of cdf of bundles of increasing nb. For a plastic bundle, this
property was simply proven by induction using the joint prob-
ability theorem [24,29]. However, all the previous demonstrations
relied on the assumption of a particular stress–strain curve of each
element.

For the broad case of fibers with general constitutive behaviors,
an analytical proof of the tail exponent additivity has been lacking.
It is presented next assuming that each stress–strain curve can be
described by an affinity transformation.

3.1. Analytical demonstration

For convenience, the analysis will be initially restricted to two
fibers. Then, the demonstration will be extended to the general
case of a fiber bundle constituted by nb fibers.

Consider two fibers and let them be numbered such that
s1rs2. Let the only random variables be the peak strengths si

(i¼1,2) and the ratio s1=s2 while the reference strength s0 and

s
σi

βi=1

Aσi/σ0

Bσi/σ0

σ0

ε

A

B

Fig. 1. Example of radially affine stress–strain curves described by Eqs. (1) and (2).
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