
Generation of non-Gaussian stochastic processes using
nonlinear filters

W.Q. Zhu a, G.Q. Cai b,n

a Department of Mechanics, State Key Laboratory of Fluid Transmission and Control, Zhejiang University, Hangzhou 310027, China
b Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA

a r t i c l e i n f o

Article history:
Received 16 July 2013
Received in revised form
12 March 2014
Accepted 13 March 2014
Available online 21 March 2014

Keywords:
Modeling of stochastic processes
Nonlinear filters
Non-Gaussian probability distribution
Spectral density

a b s t r a c t

Non-Gaussian stochastic processes are generated using nonlinear filters in terms of Itô differential equations.
In generating the stochastic processes, two most important characteristics, the spectral density and the
probability density, are taken into consideration. The drift coefficients in the Itô differential equations can be
adjusted to match the spectral density, while the diffusion coefficients are chosen according to the
probability density. The method is capable to generate a stochastic process with a spectral density of one
peak or multiple peaks. The locations of the peaks and the band widths can be tuned by adjusting model
parameters. For a low-pass process with the spectrum peak at zero frequency, the nonlinear filter can match
any probability distribution, defined either in an infinite interval, a semi-infinite interval, or a finite interval.
For a process with a spectrum peak at a non-zero frequency or with multiple peaks, the nonlinear filter
model also offers a variety of profiles for probability distributions. The non-Gaussian stochastic processes
generated by the nonlinear filters can be used for analysis, as well as Monte Carlo simulation.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Stochastic processes are involved in many areas, such as
physics, engineering, ecology, biology, medicine, psychology, and
other disciplines. For purposes of analysis and simulation, stochas-
tic processes are required to be properly modeled and generated
mathematically. It is important that a stochastic process to be
generated should resemble its measured or estimated statistical
and probabilistic properties. Two important measures have been
used for the purpose: the probability distribution and the power
spectral density. Conceptually, the probability distribution is the
property at one time instant, and it is the first-order property of
the process. The power spectral density, on the other hand, is a
statistical property involving two different time instants, and
hence is a second-order property. For a stationary stochastic
process, both the probability distribution and the power spectral
density are invariant with time.

To describe the probability distribution, many mathematical mod-
els have been proposed, defined either in infinite intervals, semi-
infinite intervals, or finite intervals. Although a probability distribution
defined in an infinite interval or a semi-infinite interval is not realistic
since any real physical quantity is always bounded, it is still widely
used due to its simplicity in mathematical treatment. However, when

adoption of such distributions may affect the analysis significantly,
models of probability distributions defined in finite ranges become
necessary.

Another important property of a stochastic process, the power
spectral density, describes the energy distribution of the process in
frequency domain. It may be more important than the probability
distribution in some situations [1]. For a Gaussian process, math-
ematical models can be obtained to match any given spectral
density [2]. However, generation of a stochastic process with a
non-Gaussian distribution and a given spectral density is much
more complicated [3–5]. This is one of the reasons for the
popularity of the Gaussian distribution, besides its simplicity in
mathematical treatment. For many practical stochastic processes,
the probability distributions are far from Gaussian, and adoption
of Gaussian distribution may results in large errors.

Based on the above considerations, versatile models for a sto-
chastic process are needed with the non-Gaussian probability
distribution and spectral density available. The method of nonlinear
filters was proposed for this purpose [6,7], in which the Itô type
stochastic differential equations are employed with the drift coeffi-
cients adjusted to match the spectral density and the diffusion
coefficients determined to fit the probability density. The present
paper reviews the method systematically and extends the procedure
for modeling stochastic processes with more profiles for the prob-
ability distributions. For overcoming the difficulty in the Monte Carlo
simulation for certain types of bounded stochastic processes, equiva-
lent models and alternative procedures are presented.
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2. Low-pass processes

Consider a stationary stochastic process X(t) generated from
the following Itô stochastic differential equation [8]:

dX ¼ �αXdtþDðXÞ dBðtÞ ð1Þ
where α is a positive constant, B(t) is a unit Wiener process, and
function D(X) will be determined subsequently according to the
properties of X(t). Multiplying (1) by Xðt�τÞ and taking the
ensemble average, we obtain

dRXXðτÞ
dτ

¼ �α RXXðτÞ ð2Þ

where RXXðτÞ ¼ E ½XðtÞXðt�τÞ� is the correlation function of X(t). Let
the mean-square value of X(t) be

RXXð0Þ ¼ E½X2ðtÞ� ¼ s2 ð3Þ
which is the initial condition for Eq. (2). The solution of Eq. (2) is
given by

RXXðτÞ ¼ s2exp ð�αjτjÞ ð4Þ

The corresponding spectral density of X(t), i.e., the Fourier
transform of RXXðτÞ, is of the low-pass type

ΦXXðτÞ ¼
1
2π

Z 1

�1
RXXðτÞe� iωτdτ¼ α s2

πðω2þα2Þ ð5Þ

Eq. (5) shows that the spectral density reaches its peak at zero, and
the band width is controlled by parameterα.

The stationary probability density pðxÞof X(t) is governed by the
reduced Fokker–Planck equation

d
dx

GðxÞ ¼ d
dx

αxpðxÞþ1
2

d
dx

½D2ðxÞpðxÞ�
� �

¼ 0 ð6Þ

where G(x) is known as the probability flow. In the present one-
dimensional case, G(x) must vanish everywhere [9], and Eq. (6)
reduces to

αxpðxÞþ1
2

d
dx

½D2ðxÞpðxÞ� ¼ 0 ð7Þ

Eq. (7) leads to [6]

D2ðxÞ ¼ � 2α
pðxÞ

Z
xpðxÞdx ð8Þ

or in the form of definite integration

D2ðxÞ ¼ � 2α
pðxÞ

Z x

xl
upðuÞdu ð9Þ

where xl is the left boundary of the defining range of the stochastic
process X(t). It is shown [6] that the mean value of X(t) must be
zero to guarantee the left-hand side to be non-negative.

Thus, the stochastic process X(t) generated from (1) with D(x)
given by (8) or (9) possesses a given stationary probability density
pðxÞ and a low-pass spectral density (5). The parameter α can be
used to adjust the spectral density, and function D(x) is used to
match any valid probability distribution.

It is noted that the probability distribution is Gaussian if D(x) is
a constant; otherwise, the distribution is non-Gaussian. Several
commonly used probability distributions will be discussed below.

2.1. Stochastic processes defined in an infinite interval

For easy mathematical treatment, stochastic processes are
often assumed to be defined in an infinite interval (�1,1). A
versatile form of the probability distribution is of the following
exponential form:

pðxÞ ¼ Cexp½�ϕðxÞ� ð10Þ

where function ϕ(x) is known as the probability potential. It can be
any function as long as it satisfies certain conditions so that (10) is
a valid probability density function. Substituting (10) into (8), we
obtain

D2ðxÞ ¼ �2αexp½ϕðxÞ�
Z

xexp½�ϕðxÞ�dx ð11Þ

as an example, consider

ϕðxÞ ¼ γx2þδx4; �1oxo1 ð12Þ
where γ40 if δ¼0, or γ is arbitrary if δ40. Substitution of (12)
into (11) results in

D2ðxÞ ¼ α
ffiffiffi
π

p

2
ffiffiffi
δ

p exp δ x2þ γ

2δ

� �2� �
erf c δ x2þ γ

2δ

� �2� �
ð13Þ

where erfc ( � ) is the complementary error function defined as

erf cðyÞ ¼ 2ffiffiffi
π

p
Z 1

y
e� t2dt ð14Þ

Another type of possible probability distribution is of the
power form

pðxÞ ¼ Cð1þγx2Þ�s; �1oxo1; γ40 ð15Þ
application of (8) leads to

D2ðxÞ ¼ α

γðs�1Þð1þγx2Þ ð16Þ

which requires that s41. The Itô equation to generate stochastic
process X(t) is then

dX ¼ �αXdtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α

γðs�1Þð1þγX2Þ
r

dBðtÞ ð17Þ

2.2. Stochastic processes defined in a semi-infinite interval

Consider a stochastic process X(t) defined in a semi-definite
domain [0,1]. Its mean value is not zero; hence, there is a delta
function at zero frequency in the power spectral density. In such a
case, the above scheme of using nonlinear filters is not applicable
directly. However, we may define a zero-mean process Y(t) by
shifting X(t), i.e.,

Y ¼ X�μX ; �μXrYo1 ð18Þ
where μX is the mean value of X(t). Thus, a nonlinear filter can be
constructed to generate process Y(t), and then X(t) from (18).

An example is the exponential distribution expressed as

pðxÞ ¼ ae�ax; a40; 0rxo1 ð19Þ
with a mean value of 1/a. The probability density for Y(t) is

pðyÞ ¼ ae�ðayþ1Þ; �1
a
ryo1 ð20Þ

function D2(y) are then obtained from Eq. (8) as

D2ðyÞ ¼ 2α
a

yþ1
a

	 

ð21Þ

the Itô equation to generate Y(t) and X(t) are respectively,

dY ¼ �α Ydtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2α
a

Yþ1
a

	 
s
dBðtÞ ð22Þ

dX ¼ �α X�1
a

	 

dtþ

ffiffiffiffiffiffiffiffiffi
2α
a
X

r
dBðtÞ ð23Þ

note that the spectral density of X(t) contains a delta function due
to its nonzero mean.

Another example is the Rayleigh distribution given by

pðxÞ ¼ γ2xexpð�γxÞ; 0rxo1 ð24Þ
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