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a b s t r a c t

In this work, we address the stochastic modeling of apparent elasticity tensors, for which both material
symmetry and stochastic boundedness constraints have to be taken into account, in addition to the
classical constraint of invertibility.We first introduce a stochasticmeasure of anisotropy, which is defined
using metrics in the set of elasticity tensors and used for quantitatively characterizing the fulfillment
of material symmetry constraints. After having defined a numerical approximation for the stochastic
boundedness constraint, we then propose a methodology allowing one to unify maximum entropy based
models that have been previously derived by considering some of these constraints and which consists
in constructing a probabilistic model for an auxiliary random variable. The latter can be interpreted
as a stochastic compliance tensor, for which the available information to be used in the maximum
entropy formulation can be readily deduced from the one considered for the elasticity tensor. A numerical
illustration of the approach to an elastic microstructure is finally provided.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Stochastic multiscale modeling has become a very fast grow-
ing discipline within the past decade and as such, it gave rise to an
extensive literature in both mechanics and applied mathematics,
ranging from themacroscalemodeling of heterogeneousmaterials
to very first attempts of stochastic atomistic-to-continuumsimula-
tions. As amatter of fact, most of the approaches have been derived
within the general scopes of uncertainty propagation and hierar-
chical upscaling techniques (that is, characterizing the probabilis-
tic behavior of a complex microstructure at some relevant scale,
given some description of the underlying randomness occurring at
finest scales), in conjunction with the tremendous amount of past
and on-going works on functional (polynomial chaos) representa-
tions for random vector-valued quantities (see [1–4]). On the other
hand, it is now widely recognized that the issue of stochastic rep-
resentation is also very important, in the sense that the probabilis-
tic model associated with any random variable of interest must
ensure, not only some desired properties on the solution of the
stochastic boundary value problem (such as the finiteness of some
of its statistical moments, for instance, see [5,6] for discussions in
the scalar and tensor-valued cases), but also the physical consis-
tency of the modeling procedure. Clearly, the latter issue turns out
to be fundamental in any multiscale approach where information
exchange across the scales is arguably crucial.

The present work deals with the probabilistic modeling of
the apparent elasticity tensor for heterogeneous microstructures,
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defined at a so-called mesoscale (i.e. for domains whose charac-
teristic length is smaller or of the same order as the size of the
representative volume element that is usually considered in
stochastic homogenization theories). From a theoretical mechan-
ics standpoint, properties exhibited by such tensors, together
with their relationship to effective ones, have been studied in
the nineties by Huet and his coworkers [7,8] (see the general
review [9]). Specifically, the proposed methodology is derived
within the general framework of information theory and having
recourse to theMaximum Entropy (MaxEnt) principle. Such an ap-
proach, relying on randommatrix theory, has been pioneered in [6]
(making use of earlier derivations by the same author, obtained
in the context of elastodynamics; see [10,11]) and later followed
by numerous authors (see the non-exhaustive list below). In
relation with some ‘‘philosophical’’ issues regarding which in-
formation should reasonably be taken into account, the formal
derivations thus obtained differ by the use of additional con-
straints (combined to the classical constraints of normalization
and invertibility; see Section 3), integrating information related
to either boundedness (see [12,13] for applications in the random
matrix and random field cases, respectively) or material symme-
try (see [14,15]) properties for the random elasticity tensor. The
aim of this study is therefore to unify these treatments and to pro-
pose a methodology allowing one to take into account all these
constraints at the same time and within a nonparametric frame-
work. For this purpose, we will have recourse to a change of vari-
able which relaxes the boundedness constraint, thus introducing
an auxiliary random variable which can be viewed as a stochastic
compliance tensor and for which the probabilistic model will be
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finally constructed by a ‘‘translation’’ of the information available
on the random elasticity matrix.

This paper is organized as follows. We first introduce and
discuss, in Section 2, the definition of a stochastic measure of
anisotropy which can be used for quantitatively characterizing, in
some probabilistic sense (to be defined), the fulfillment of material
symmetry constraints. Section 3 is devoted to the definition of
the methodology and construction of the probabilistic model
associated with the auxiliary random variable. In particular, we
recall the MaxEnt principle and discuss a strategy regarding the
definition of available information for this new variable.We finally
provide, in Section 4, a numerical illustration of the approach.

2. Stochastic measure of anisotropy

2.1. Definition

The oldest and most widely used deterministic measure of
anisotropy is based on the consideration of a scalar parameter,
the definition of which depends on some given components of
the elasticity tensor. Among others, the so-called Zener index,
defined for crystals with cubic symmetry [16], is for instance
written as z = [C]44/([C]11 − [C]12), where Kelvin’s notation
for the elasticity tensor is assumed. While such indexes benefit
from their simplicity, they suffer from a lack of universality and
can hardly be extended to other situations (e.g. when the crystal
exhibits weaker material symmetries or when one is interested in
measuring the distance to another class than the isotropic one); see
the discussions in [17–19].

Indeed, the usual anisotropy measurement can be seen as the
characterization of the residual distance between a given elasticity
tensor with arbitrary symmetry and its projection onto the set of
isotropic–elasticity tensors. Based on this observation, it follows
that a more general definition of anisotropy, the latter being now
understood as the distance to any material symmetry class (and
not only the isotropic one), can be readily obtained by first defining
a metric in the set Ela of elasticity tensors and then, by defining
a projection operator onto a given subset of Ela. A first natural
distance is the Euclidean one, denoted as dE and given for any
elasticity matrices [C]1 and [C]2 by

dE([C]1, [C]2) = ∥[C]1 − [C]2∥F , (1)

wherein ∥ · ∥F denotes the Frobenius norm. Alternative metrics
have been derived in the literature, among which the Log-
Euclidean and Riemannian ones (see [20,21]), denoted respectively
by dLE and dR and defined as

dLE([C]1, [C]2) = ∥ log[C]1 − log[C]2∥F , (2)

dR([C]1, [C]2) = ∥ log([C]
−

1
2

1 [C]2[C]
−

1
2

1 )∥F . (3)

Let Csym
⊆ Ela be the set of elasticity tensors with sym material

symmetries (e.g. C Iso – resp. CTrans· Iso – is the set of fourth-order
isotropic – resp. transversely isotropic–elasticity tensors) and let
P sym be the projection operator onto Csym. We then denote by
[C]

sym
= P sym([C]) ∈ Csym the associated projection of any

elasticity tensor [C], defined as

[C]
sym

= arg min
[X]∈Csym

d([C] − [X]), (4)

in which d is any of the metric defined above. Upon introducing
a tensorial basis of Csym (or equivalently, a parametric represen-
tation of the matrix form for an elasticity tensor in Csym), opti-
mization problem (4) can be solved in a straightforward manner,
yielding either closed-form expressions for the projected tensor
(for the Euclidean distance) or equivalent optimization problems
(formulated with respect to a finite set of parameters) when the

Log-Euclidean or the Riemannian metric is used; see [22,23] for
results expressed in matrix and vector forms, respectively. For in-
stance, the closest isotropic approximation, in the Euclidean sense,
of an arbitrary elasticity tensor [C] written in Kelvin’s notation is
given by [24] (see also [22]):

[C]
Iso

=


κ + 4υ/3 κ − 2υ/3 κ − 2υ/3 0 0 0

κ + 4υ/3 κ − 2υ/3 0 0 0
κ + 4υ/3 0 0 0

2υ 0 0
Sym. 2υ 0

2υ

 , (5)

in which

κ =
1
9

([C]11 + [C]22 + [C]33 + 2([C]12 + [C]13 + [C]23)) , (6)

and

υ =
1
30

(2([C]11 + [C]22 + [C]33 − [C]12 − [C]23 − [C]31)

+ 3([C]44 + [C]55 + [C]66)). (7)

Note that this result coincides with the one derived by Fedorov,
having recourse to an apparently different and more physically-
sounded approach [25], and that the two different treatments
were later shown to be equivalent in [26]. It is worth while
to note that within a deterministic framework and for material
symmetry classes involving the definition of a reference frame (e.g.
for transverse isotropy, orthotropy, etc.), the computation of the
closest approximation exhibiting the required symmetries (which
is often referred to as the effective approximation in the literature
of elasticity) necessitates an additional minimization problem,
defined over all orthogonal transformation of the reference frame,
to be solved; see the discussions in [27–30], as well as the
references therein. However, such a consideration is not relevant
to this study, since the anisotropic statistical fluctuations induced
by the probabilistic model can be seen as representing the
randomness on both the mechanical properties and the reference
frame.

Let us now consider the stochastic case, and let [C] be the
M+

n (R)-valued random variable corresponding to the modeling
of a random elasticity matrix with arbitrary symmetry. Following
the previous discussions, we denote as [Csym

] = P sym
{[C]} the

M+
n (R)-valued random variable corresponding to the projection of

[C] onto Csym, associated with projection operator P sym (defined
with respect to any suitable metric). Consequently, a stochastic
measure of anisotropy can be defined by making use of the R+-
valued random variable µsym defined as

µsym
= d([C], [Csym

]). (8)

The statistical properties of µsym (and especially, its mean value)
are worth characterizing and will be used in the sequel for
discussing the relevance of stochastic representations for the
random elasticity tensor.

2.2. Eigensystem-based characterization of symmetries

Having introduced the stochastic measure of anisotropy, a
fundamental issue concerns the information that one may take
into account in order some moments (e.g. the mean) of µsym to
be specified. More specifically, one may answer the following
question: how to characterize a given set Csym of elasticity with
sym material symmetries, so that the properties thus identified
can be used in the construction of the probabilistic model? In fact,
several approaches for elasticmaterial symmetry classification and
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