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Brute force Monte Carlo simulation methods can, in principle, be used to calculate accurately the reliability
of complicated structural systems, but the computational burden may be prohibitive. A new Monte
Carlo based method for estimating system reliability that aims at reducing the computational cost is
therefore proposed. It exploits the regularity of tail probabilities to set up an approximation procedure
for the prediction of the far tail failure probabilities based on the estimates of the failure probabilities

obtained by Monte Carlo simulation at more moderate levels. In this paper, the usefulness and accuracy
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of the estimation method is illustrated by application to a particular example of a structure with several
thousand potentially critical limit state functions. The effect of varying the correlation of the load
components is also investigated.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In general, it is very difficult to calculate the reliability of
realistic structural systems by using conventional theoretical
reliability techniques. This is usually caused by the high number
of basic random variables needed for modeling the uncertain
elements of the problem and the large number of safety margins
that are used to describe the system, which will generally
consist of a series system of parallel subsystems. At least, in
principle, the reliability of complicated structural systems can
be accurately predicted in a straightforward manner by standard
Monte Carlo simulation methods. However, the computational
burden may be prohibitive for highly reliable systems. Motivated
by this observation, the authors have initiated the development
of simulation based methods for calculating the reliability of
structural systems that aims at reducing the computational cost.
This is achieved by introducing a cascade of systems depending
on a parameter varying between zero and one, where the original
system is obtained when this parameter equals one. When the
parameter value is zero, the system is highly prone to failure, and
for the small to intermediate values of the parameter, the failure
probability can be estimated with high accuracy by Monte Carlo
simulation with moderate computational efforts. By exploiting the
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regularity of the failure probability as a function of the parameter,
an approximation procedure for predicting the failure probability
at parameter value one has been proposed in [1]. This method
was applied to small structural systems in [1,2] and it was shown
that good results could be quickly obtained on a standard laptop
computer.

In this paper, the specific case of a 3D beam structure (grillage)
will be studied. It consists of 40 transverse and 40 longitudinal
beams, creating 40 x 40 equidistant and intersecting main beams.
As discussed in the section on numerical examples, the number
of basic random variables in the model will be 4880 and the
number of limit state functions will be 6540. At the present stage
of development, this system would represent a huge challenge
for any standard reliability method for system analysis. It will be
shown that the proposed method can handle also this system with
feasible computational efforts.

2. Component reliability

The basic element in the construction of the cascade of systems
mentioned in the Introduction is already seen for the case of
component reliability. Let us consider a safety margin M which
represents the failure mode under consideration. It is assumed that
M is expressed in terms of n basic random variables Xy, ..., X, as
M = G(Xq, ..., X,), where the limit state function G can be rather
complicated. To calculate the failure probability py = Prob(M <
0), the method proposed in [1] is based on introducing a cascade
of safety margins M(A) = M — upy (1 — 1), where uy, = E[M]
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and the parameter A € [0, 1]. Putting ps(A) = Prob(M(X) < 0),
then p; = py(1).Itis seen that E[M(0)] = 0, which means that the
corresponding component is highly prone to failure when A = 0.
Hence, the failure probability ps (1) will decrease from a high value
at A = 0 to the small target value at A = 1. As proposed in [1], we
shall now make the following assumption about the behavior of
the failure probability pf (1) of the safety margin M(A):

pr(1) ~ q()exp{—a(r —b)‘}, (1)

where the function q(}) is slowly varying compared with the
exponential function exp{—a(\ — b)‘}.

The practical importance of this relation, if it applies, is that the
target failure probability p; = py(1) can be obtained from values
of pr(A) for A < 1. Our focus, in this paper, is on methods for
estimating p; by Monte Carlo simulation. The observation above
may then be significant, as it is usually easier to estimate ps(})
for A < 1 more accurately than the target value since they are
larger. Fitting the parametric form for ps(A) to the estimated
values would then allow us to provide an estimate of the target
value by extrapolation. The viability of this proposal will be
demonstrated by a numerical example below. However, there
could be exceptional cases, e.g., for variables which are uniformly
distributed on a finite interval, where application of a functional
form like Eq. (1) might not be accurate for all probability levels.
It is believed that such discrepancies can be identified at an early
stage of the probabilistic analysis.

3. System reliability

We shall consider structural systems that can be described
as combinations of component failure modes. Each failure mode
is assumed to be represented by a safety margin. Let M; =
Gi(X1,...,Xy), j = 1,...,m, be a set of m given safety margins
expressed in terms of the n basic random variables that are
involved in specifying the structural system we consider. The
cascade of systems we shall use in our method for estimating the
failure probability is then obtained from the class of safety margins
defined as M;(A) = M; — (1 — 1), where pu; = E[M;].

The basic systems are series systems and parallel systems. If the
system at hand is a series system, the failure probability will be
given as,

m
prd) = Prob(U{Mj(A) < 0}). (2)
j=1

In general, any system can be written as a series system of
parallel subsystems [3-5]. The failure probability would then be
given as,

l
pr(n) = Prob(U (M) < 0}) 3)

j=1ieG
where G € {1,...,m}, j = 1,...,1, denote the index sets
defining the parallel subsystems.

To use the proposed method for failure probability estimation,
we then make the assumption that ps(A) can be represented as in
Eq. (1) also for the system reliability problem.

4. Reliability estimation by optimized fitting

The method to be described in this section is based on the
assumption expressed by Eq. (1). As argued in [1], for practical
applications it is implemented in the following form,

pr(A) ~ gexp{—a(x — b)‘}, (4)
for Ag < A < 1 for a suitable value of 1g, where q is now assumed
to be a constant. An important part of the method is therefore to
identify a suitable Ay so that the rhs of Eq. (4) represents a good
approximation of py(A) for A € [Ao, 1].

For a sample of size N of the vector of basic random variables
X = (X1,...,Xp), let N; (1) denote the number of samples in the
failure domain of M()). The estimate of the failure probability is
then

Ne (A
oy = ).

The coefficient of variation of this estimator is

. [1—pr )
Cpr) = [ ————. 6
v(Pr(2)) P OON (6)

Afair approximation of the 95% confidence interval for the value
pr(A) can be obtained as Clg 95 (1) = (C~ (1), C*(X)), where

CEM) = pr(W) (1 £ 1.96Cy (Br (1))). 7)

The problem of finding the optimal values of the parameters
g, a, b, c can carried out by optimizing the fit on the log level by
minimizing the following mean square error function [1],

(3)

M
F(q.a.b.c) =Y  wi(logps (k) — logq +a(; — b)°)’, (8)
j=1

where Ay < A1 < --+ < Ay < 1denotes the set of A values where
the failure probability is empirically estimated. w;, j = 1,..., M,
denote weight factors that put more emphasis on the more reliable
data points, alleviating the heteroscedasticity of the estimation
problem at hand. The choice of weight factors is to some extent
arbitrary. In this paper, we use w; = (log C*(%;) — log C*()Lj))79
with & = 1 and 2, combined with a Levenberg-Marquardt least
squares optimization method [6]. This usually works well provided
reasonable, initial values for the parameters are chosen. In this
paper, & = 2 has been used. Note that the form of w; puts some
restriction on the use of the data. Usually, there is a level A;
beyond which wj is no longer defined. Hence, the summation in
Eq. (8) has to stop before that happens. Also, the data should be
preconditioned by establishing the tail marker Aq in a sensible way.

Although the Levenberg-Marquardt method, as described
above, generally works well, it may be simplified by exploiting
the structure of F. It is realized by scrutinizing Eq. (8) that if b
and c are fixed, the optimization problem reduces to a standard
weighted linear regression problem. That is, with both b and ¢
fixed, the optimal values of a and log g are found using closed form
weighted linear regression formulas in terms of wj, y; = log ps (1)
andx; = (A; — b)“.

It is obtained that the optimal values of a and q are given by the
relations,

M
> wix =X —Y)
i=1
a*(b,c) = —— , (9)
Z wj(xj — R)Z
j=1
and
logq*(b, c) =y + a*(b, o)X, (10)

wherex = Y wixg/ YL wi ¥ = 00w/ Yo wy.

The Levenberg-Marquardt method may now be used on the
function I:‘(b, ¢) = F(q*(b,c),a*(b,c), b, c) to find the optimal
values b* and c*, and then the corresponding a* and g¢* can be
calculated from Egs. (9) and (10).

For estimation of the confidence interval for a predicted value of
the failure probability provided by the optimal curve, the empirical
confidence band is reanchored to the optimal curve. The range of
fitted curves that stay within the reanchored confidence band will
determine an optimized confidence interval of the predicted value.
This is obtained by constrained nonlinear optimization. As a final
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