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Welded joints are used in various structures and infrastructures like bridges, ships and offshore struc-
tures, and are submitted to cyclic stresses. Their fatigue behaviour is an industrial key issue to deal with
and still offers original research subjects. One of the available methods relies on the computing of the
stress concentration factor. Even if some studies were previously driven to evaluate this factor onto some
cases of welded structures, the shape of the weld joint is generally idealized through a deterministic
parametric geometry. Previous experimental works however have shown that this shape plays a key role
in the lifetime assessment. We propose in this paper a methodology for computing the stress con-
centration factor in presence of random geometries of welded joints. In view to make the results
available by engineers, this method merges stochastic computation and semi-probabilistic analysis by
computing partial safety factors with a dedicated method.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Welded joints are usually used in various structures such as
bridges or marine and submarine structures and are regularly
submitted to cyclic stresses. It is then necessary to assess their
fatigue bahaviour. Fatigue analyses of welded structures are
therefore one of the key issues addressed for steel structures (see
the review in [1]). One of the key input parameters is the ampli-
tude of the applied local stress. When considering the S-N ap-
proach, the knowledge of this stress allows computing the fatigue
lifetime expressed with a number of cycles N thanks to the S-N or
Wohler curves. Nevertheless, the required local stress is generally
unknown unlike the applied nominal stress on the structure. We
therefore need methods to compute the local stress on the struc-
ture from the nominal stress. One way is to calculate the stress
concentration factor; this factor has the advantage of simply
linking the local stress with the nominal stress using a simple
relationship.

It is also now well known that the geometry of the welded
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joints affects significantly the local stresses and therefore the
service lifetime of welded joints. For T-joints, it is influenced by
global imperfections such as misalignments of the two welded
components [2,3], as well as by local parameters such as the radius
in weld toe, the width, the height or the angle at weld toe [4-6]. In
the present study only the latter local imperfections are con-
sidered. The welded process mainly generates the local geometry
of the joint such as the technology used, the operator and the
protocol (number of welding passes). The quality of the welding is
generally controlled to verify that some geometrical parameters
(angle, radius) stay between an upper and a lower bounds but the
real value is generally not registered.

In view to analyze and quantify the role of the geometry, the
first issue is to get real geometries of welded joints (here T-weld
joints). The French company DCNS used a laser process measure-
ment named WISC [7] shown in Fig. 1 in order to get real values of
the geometrical parameters and their variations. The statistical
analysis of these measures was done in [8] and provided prob-
ability distribution functions (PDF) for the main parameters which
best describe the geometry and play a major role for stress
computation.

The second issue is to develop a tractable numerical method
that is able to deal with random geometries of the welded joint.
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Fig. 1. Laser process measurement WISC used by DCNS.

The consideration of random geometries with classical Finite Ele-
ment Model (FEM) implies a remeshing of the geometry for the
different geometrical configurations that are to be accounted for in
an uncertainty quantification purpose. This task may be intractable
and the idea is to skirt the issue of remeshing. Several methods
were developed to this aim: a first class of methods consists in
using a stochastic transformation of a deterministic reference
domain [9] and a second class of methods relies on the re-for-
mulation of the problem on a fictitious domain that includes all
realizations of the geometry [10-12]. These latter methods based
on fictitious domain differ by the representation of the geometry
and the associated discretized problem; in this paper we use the
method named XSFEM (eXtended Stochastic Finite Element
Method) presented in [11]. This method takes advantage of XFEM
(eXtended Finite Element Method) by using level-sets theory to
describe the boundaries and SFEM (Stochastic Finite Element
Method) by introducing random variables on the Finite Element
theory. This method allows developing an approximation of a
variable of interest (e.g. displacement or stress) in a stochastic
space. Nevertheless, this approximation may need for intrusive
programming in the computation code which limits its use in
structural engineering. The present paper suggests using a least-
squares method for the stochastic approximation of the stress
concentration factor. This method only requires samples of the
factor which are obtained here from a post-processing of the
XFEM approximation, the XFEM being preferred to the FEM for
remeshing consideration as stated above. The overall method that
combines XFEM and least-squares method is called RXFEM (for
Regressive eXtended Finite Element Method) and the results are
compared with analytical approximations available in the litera-
ture [5,13-15]. The final objective of this paper is to provide a
deterministic analytical formulation of the stress concentration
factor based on the reliability analysis from the approximation
given by RXFEM: one of the most elegant ways is the partial safety
factor format.

In the first part, the main computational principle of RXFEM is
shown for the case of random geometries with a focus on the
accurate computation of local stresses. In the second part, we re-
call the theoretical background of the calibration of partial safety
factors and its extension in case of full probabilistic expression for
a semi-probabilistic formulation. Its application to the stress
concentration factor K; is then presented. It is shown that the
approximation gives close results to existing analytical formula-
tions [5]. A sensitivity analysis, using the total Sobol indices, is also
proposed that allows to highlight the most influential random
variables on the reliability computation [16,17].

In the last part, we apply this methodology on two geometries
of welded joints in view to illustrate the calibration of partial
safety factors and show the potential extension to industrial cases.

2. Backgrounds of XFEM and SFEM methods for random
geometries

The resolution of problems governed by random variables be-
came more and more important during the last three decades [18].
To solve this family of problems, SFEM was developed in the early
1990s [19] and is still improved to deal with specific questions in
solid and fluid mechanics. It is more and more considered even for
industrial applications for non-linear transfer of random variables
especially when quadratic response surfaces are not adapted
[20,21]. In this paper we consider linear elastic problems with
random geometry. In this part, we give some basic knowledge
about the coupling of XFEM and SFEM methods for the resolution
of this family of problems to simulate random geometries of a
domain (see [22] for details).

2.1. Stochastic problem with random geometry

We consider the linear elastic problem defined on a random
domain Q(¢) represented in Fig. 2 where £ is a finite set of d
random variables that constitutes a parameterization of the geo-
metry of the random domain Q(¢). Let (£, 8, P;) be the associated
probability space where = € R? and P; is the probability measure
of &

The problem is governed by the following equations:
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where u is the displacement, C is the Hooke tensor, & is the
Cauchy stress tensor, & = ngsymﬁ) is the strain tensor, 1 the or-
thonormal external vector on the border of the domain 02 (¢) and
02(¢) = I U () with I3 n I3(¢) = @. The surface and volume load

densities F and ? are here considered deterministic for simplicity
but the extension to stochastic loadings is straightforward.

In order to deal with a parametrized domain, we introduce the
eXtended Finite Element (XFEM) method [23] that does not re-
quire the mesh to conform with the geometry and consequently
avoids remeshing. XFEM is a method based on classical finite
element method and was devoted to deal with crack propagation
without any remeshing. This is achieved by using level-sets that
implicitly define the crack both in terms of contour and dis-
continuity of stresses on the domain. For simulating geometries of
welding joints, only the description of the contour is required.

We define a virtual deterministic domain B that includes all
possible realizations of the domain Q(&). The first step is the
meshing of domain B. Using XFEM requires defining implicitly the
border of the domain by level-set functions. To that aim we in-
troduce a distance function ¢: B x £ - R:

PX, &) = +dist(X, 02(£)). @

P

Fig. 2. Model finite element method problem.
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