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a b s t r a c t

We introduce a novel technique, POF-Darts, to estimate the Probability Of Failure based on random disk-
packing in the uncertain parameter space. POF-Darts uses hyperplane sampling to explore the un-
explored part of the uncertain space. We use the function evaluation at a sample point to determine
whether it belongs to failure or non-failure regions, and surround it with a protection sphere region to
avoid clustering. We decompose the domain into Voronoi cells around the function evaluations as seeds
and choose the radius of the protection sphere depending on the local Lipschitz continuity. As sampling
proceeds, regions uncovered with spheres will shrink, improving the estimation accuracy. After ex-
hausting the function evaluation budget, we build a surrogate model using the function evaluations
associated with the sample points and estimate the probability of failure by exhaustive sampling of that
surrogate. In comparison to other similar methods, our algorithm has the advantages of decoupling the
sampling step from the surrogate construction one, the ability to reach target POF values with fewer
samples, and the capability of estimating the number and locations of disconnected failure regions, not
just the POF value. We present various examples to demonstrate the efficiency of our novel approach.

Published by Elsevier Ltd.

1. Introduction

1.1. Problem Statement

Estimating the probability of failure based on computational
simulation models is a challenging problem in several engineering
applications including device and system design [3–6], structural
and reliability analysis [7–9], fault-tree analysis [10–12], and fi-
nancial systems [13–15].

The probability of failure, P, quantifies the probability that a
“failure” condition occurs, where failure is defined by the value of
some scalar function, f(x), falling above/below a threshold T, e.g.,
the probability that a device exceeds a certain temperature when
subject to varying environmental conditions: ( ( ) > )P f x T , or the
voltage of a circuit node falls below a certain point when power
supply noise fluctuates: ( ( ) < )P f x T . A few design constraints
contribute to the difficulty of estimating P, including:

• Dimensionality: Probability of failure problems are often more
difficult when the domain (the parameter space of f(x)) is of
high dimension, d. In real applications involving hundreds or
thousands of parameters, often the value of f(x) is dominated by
only a few of them. Therefore, f(x) can be replaced by a lower di-
mensional function involving just the significant parameters, but
this is not always easy to achieve.

• Noise: If f(x) is noisy or has discontinuities, evaluating it at a
point returns little about its behavior within a neighborhood of the
point, at which characterizing the function becomes difficult and
expensive.

• Cost: The number of required samples, which is proportional
to the number of points x where f(x) is evaluated, is a key metric
for evaluating the running time of a probability of failure method.
Cost is a critical challenge, especially when a single evaluation may
require a finite-element simulation to solve an implicit limit state
function. Cost also is a challenge for the estimation small failure
probabilities, e.g. Monte Carlo methods require more samples to
provide predictions with small statistical uncertainty as the mag-
nitude of the failure probability decreases.

• Topology: Quantifying P is often associated with concluding
the parameter values leading to failure, the location of the failure
region, and its shape and topology. As the failure probability de-
creases, locating the failure region becomes a bigger challenge.
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1.2. Probability of failure estimation approaches

Approaches to estimate the probability of failure of a compu-
tational simulation model can be, in general, categorized into a
few groups, such as:

• Direct sampling methods: Monte Carlo (MC) sampling is
probably the most widely used approach for calculating un-
certainty and failure probability [16–19]. MC sampling methods
have many advantages: they are simple, reproducible, easy to
implement, and work well with a variety of sensitivity analysis
procedures. Their main drawback is expense. A large number of
samples are needed to get good estimates of small probabilities.
Many approaches have been designed to overcome MC sampling's
expense. Latin Hypercube Sampling (LHS) is a stratified MC sam-
pling method. It ensures that samples are placed in equiprobable
strata for each input parameter and “mixed” across dimensions.
Compared to standard Monte Carlo sampling, LHS tends to give
better coverage of the input space, especially for small sample
sizes. Also, LHS output statistics have lower variance, especially for
separable functions [20,21]. However, LHS and sampling-based
methods in general are very expensive as they require a high
sample budget to cover the entire domain. Importance sampling
[22] involves sampling from a density which concentrates the
samples in the important (failure) region and weights those
samples relative to the original density of the input parameters.
However, importance sampling requires a priori knowledge of the
failure region, which is often not known.

• Surrogate-based approaches: Surrogate models (also called
meta-models or emulators) are commonly used to understand
output responses of systems in several UQ problems [23]. Surro-
gates, in general, are very useful in understanding trends and
sensitivities [24]. They are called surrogates because they serve as
a substitute for evaluating the original function using a few
function evaluations. Among the popular surrogates, Gaussian
process (GP) models [25] (also called Kriging models) are governed
by a covariance function, provide a spatial interpolation and an
estimate of uncertainty at new prediction points, and are guar-
anteed to go through the points to which they are fitted. Other
surrogate models include radial basis functions, smoothing
splines, neural networks, and polynomial regression. Using sur-
rogates to solve probability of failure problems can be tricky,
however, for their sensitivity to inaccuracies around the failure
boundary.

Another surrogate approach is to construct stochastic expan-
sions which represent stochastic responses. For example, the
Polynomial Chaos Expansion (PCE) is based on a multidimensional
orthogonal polynomial approximation. In non-intrusive PCE for
black-box functions, the calculation of chaos expansion coeffi-
cients for response metrics of interest is based on a set of simu-
lation response evaluations. The calculation of these coefficients is
usually performed using regression methods or spectral projection
methods. The regression approach finds the set of PCE coefficients
which best match the simulation model responses. The spectral
projection approach projects the response against each basis
function using inner products and employs the polynomial or-
thogonality properties to extract each coefficient. Each inner pro-
duct involves a multidimensional integral which can be evaluated
numerically using sampling, tensor-product quadrature, or sparse
grid approaches. Much work in the past decade has focused on
efficient calculation of these coefficients using sparse grids and
adaptive grid methods [26–29].

• Approximate methods: There are a variety of approximate
methods such as FORM and SORM which approximate the limit
state function with first or second order expansions [30,22]. These
methods originated in civil and structural engineering, e.g. to de-
termine when a probabilistic load would exceed a probabilistic

capacity for a structure. These methods are often more efficient at
computing low probability events, the tail statistics, than sam-
pling. To make probability calculations more tractable, the user-
specified uncertain variables are transformed to standard normal
variables, i.e. independent Gaussian random variables with mean
zero and variance one. The original variables may be non-normal
and correlated. In the transformed space, probability contours are
circular. Also, the multi-dimensional integrals which define the
POF calculation can be approximated by simple functions of a
single parameter, β, called the reliability index. β is the minimum
Euclidean distance from the origin in the transformed space to the
failure boundary. This point is also known as the Most Probable
Point (MPP) of failure. There are global and local reliability
methods. Global methods can find multiple MPPs if they exist [31–
33]. Local methods use local optimization to locate one MPP.
Subset simulation [34,35] is a reliability based method for esti-
mating small failure probabilities, converting the small region
problem into a series of larger conditional probabilities.

• Hybrid methods: Several estimation approaches combine ex-
isting methods. For example, LHS-GP is a global Gaussian process
surrogate built on LHS sample points instead of Monte Carlo
sample points. (Note: there are some methods which adaptively
select sample points based on the prediction variance of the GP. In
this paper, when we refer to LHS-GP we mean a non-adaptive
version, where a GP is built over a fixed LHS sample.) EGRA [32] is
a global reliability method designed to overcome some of the
limitations of local reliability methods. The EGRA method begins
with a GP emulator using a very small number of LHS samples, and
then adaptively chooses where to generate subsequent samples in
an attempt to increase the emulator accuracy in the vicinity of the
failure boundary. The resulting GP model is then sampled using
multimodal adaptive importance sampling to calculate the prob-
ability of failure. By locating multiple points on or near the failure
boundary, complex and nonlinear boundaries can be modeled,
allowing a more accurate POF estimate. Because EGRA con-
centrates samples in the area where accuracy is important (i.e. in
the vicinity of the failure boundary), it is relatively efficient in
number of samples required.

1.3. Paper contribution

The known hybrid sampling-surrogate methods do not have all
of our desired features (e.g., efficiency and accuracy). For example,
LHS sampling is accurate but inefficient. Accuracy comes from
covering the whole domain to find the failure regions. But this is
also inefficient, requiring many samples, and these are not placed
adaptively. At the other extreme, EGRA is very efficient because it
uses the information gained from previous samples to guide future
placement, and hence requires few samples. Its drawback is gen-
erality: it is tied to a specific GP surrogate that does not accurately
approximate noisy or discontinuous functions.

In this paper, we present a new approach to failure probability
estimation, called POF-Darts; see Fig. 1. Our key target is to quickly
cover the entire domain with sample points surrounded by pro-
tective spheres of variable radii. We focus on an adaptive sampling
phase which uses basic concepts from computational geometry
and random sampling to speed up the convergence towards the
failure regions. Each time we throw a new sample point, we sur-
round it with a sphere based on information we estimate about
the Lipschitz condition which bounds the function value change
within the sphere. Then, based on this bounding value, we cate-
gorize that sphere as “green” when the sphere is in the no-failure
region and “red” when the sphere is in the failure region. We use
spheres to cut off wide swaths of space requiring no further ex-
ploration. Additionally, line-guided sampling improves the effi-
ciency of exploring the remainder of the domain. Every time we
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