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A B S T R A C T

There are currently over 100,000 merchant ships operating globally. To reduce emissions requires predicting
and benchmarking the power they use. This is relatively straightforward for calm conditions but becomes almost
impossible in larger waves. Design power predictions for ships in weather are typically derived by applying a
‘margin’ onto a reference ‘calm water power’. This is of questionable accuracy as the techniques available to
estimate these ‘margins’ are inaccurate. To improve the accuracy and flexibility of such predictions this paper
investigates the use of neural networks. For this, 27 months of continuous monitoring data are used from 3
vessels of the same design, sampled every 5min. Multiple network sizes are considered and evaluated to de-
termine the quantity and quality of data required for predictions. A key aspect is determining network archi-
tectures optimised not just for accuracy, but that give close relationships between the input variables and shaft
power. Predictions are compared to the results of a regression, the conventional tool to determine shaft power
from measured full-scale data from ships. The predictions from this network are similar in accuracy to those of
standard practices, with an error less than 10%, but the scope for further improvements is large.

1. Introduction

It is estimated that 90% of the world's trade is seaborne, due to the
efficiency of shipping as a mode of transport. Despite this efficiency, the
sheer volume of trade means that global shipping is responsible for
3.1% of anthropogenic CO2 emissions (IMO, 2012), equivalent to those
of a major industrialised economy such as Germany or Japan. Despite
this shipping is presently outside of the United Nations Framework
Convention on Climate Change (UNFCCC (United Nations, 1994))
commitments to reduce emissions. Implementation of an effective en-
ergy efficiency management (SEEMP (Register, 2012)) plan for a vessel,
as mandated by IMO, requires benchmarking of its fuel usage. There-
fore prediction of fuel consumption, based on its power requirement, is
extremely valuable. Accurate prediction of a ship's power requirement
in different weather conditions is difficult using traditional methods
based on model tests and/or numerical analysis (Molland et al., 2011).
Even more sophisticated methods, such as fitting high frequency op-
erational data with regression curves (Lakshmynarayanana and
Hudson, 2017) or comparing to design speeds to produce a weather
margin (Kwon, 2008), (Lu et al., 2015), struggle to give accurate pre-
dictions which would allow vessels to determine the penalties for tra-
velling a given route.

Traditional techniques for power prediction at the design stage rely

on computational analysis of the added resistance due to waves, or on
towing tank tests at model scale, see Molland et al. (2011). Much of the
operational ship performance analysis is presently based on measured
data, and focuses on trying to obtain an accurate regression curve fit to
the power-speed relationship in calm water to provide a baseline per-
formance (Carlton, 2012). It has advantages in its simplicity, but is time
consuming and concentrates purely on the relationship between speed
and power, ignoring fluctuations for weather. As it is the industry
standard it is chosen as a means of comparison between the developed
method and those in regular use for analysing ship performance. In
order to derive such a regression fit, it is common to filter out perfor-
mance data in waves above a certain, arbitrary, height. A choice must
also be made on whether to derive the curve for the remaining data set,
or whether to also filter for draught and vessel trim. It is extremely
difficult to analyse ship performance data in waves using such methods
shown by Lakshmynarnyanana (Lakshmynarayanana and Hudson,
2017), where the nature of the regression relationship is not known a
priori. Th artificial neural network method (ANN) allows the possibility
of deriving a method of predicting ship power based on all of the un-
derlying physical parameters. This predictive model may be used in
performance analysis as well as having the capability to be used for
weather routing and deriving design margins for future ships.

Recorded data has historically been used for similar estimations,
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through use of the ‘noon report’ of the ship's position, wind speed, es-
timate of sea state and daily fuel consumption taken at noon each day
during operation. This type of analysis requires a large number of
voyages before the required quantity of data can be collated and also
suffers from the averaging inherent in using one data point to represent
the operation and weather conditions from a 24hr period. These reports
are also reliant on observation and subject to human error. Despite
these drawbacks noon reports are currently used to monitor vessel
status and operational efficiency. Recent improvements in the ability to
collect, store and transmit data allows for analysis of these different
variables at a much higher frequency. The extra data can be combined
with recent advances in forecasting environmental conditions using
hindcast models to provide improved predictions. Dinham-Peren and
Dand (2010) highlight the potential benefits and some of the problems
with using these data to derive performance benefits.

Beyond Dinham-Peren and Dand (2010) there are a few other recent
attempts to predict ship performance from data measured more fre-
quently. These papers utilise a range of techniques, e.g. Trodden et al.
(2015), Aldous et al. (2015) and Lu et al. (2015). Trodden et al. (2015)
investigated a method for associating segments of a data-stream with its
corresponding ship activity to find the fuel efficiency; the method uti-
lises a number of filtering techniques to determine the activity being
performed. To validate the methodology, results from the data analysis
of speed over ground are compared to fuel consumption data measured
under sea-trial conditions and found to be in close agreement. The
analysis of this paper utilises one month's worth of data, constituting
43,143 data-points. Aldous et al. (2015) categorises the relevant
sources of uncertainty in performance measurement. A sensitivity
analysis conducted on the sources of uncertainty highlights the relative
importance of each. The two major data acquisition strategies, con-
tinuous monitoring and noon reporting, are compared, using 9570 data
points, after filtering, taken over 370 days. It was found that the
number of observations in the data set has a significant effect on un-
certainty, with more data reducing the uncertainty, with the observa-
tions taken at either 15min (continuous monitoring) or 24 h (noon
reports). Lu et al. (2015) looked at a semi-empirical addition to the
method of Kwon (2008) to estimate the ship's added resistance con-
sidering the specific ship type under varying draughts, speeds, en-
counter angles, sea states, fouling effect and engine degradation con-
ditions.

Despite these attempts to utilise some of the available data there are
limited attempts to apply soft computing or machine learning techni-
ques on data from operational measurements. This is despite the use of
Artificial Neural Networks (ANN) in a number of other marine appli-
cations, Jain and Deo (2006) review the use of neural networks in ocean
engineering. They show that the majority of applications of neural
networks in ocean engineering are to predict natural variables in spe-
cific locations (wind speed and direction, wave height - Hu et al. (2016)
and tide - Lee and Jeng (2002)), but that there is some use for pre-
dicting non-natural variables like predicting ship parameters - Islam
(2001) and vessel location - Zissis et al. (2015). The majority of papers
reviewed by Jain and Deo (2006) are simple supervised feed-forward
networks with one or two hidden layers and a low number of inputs
(with a few exceptions Makarynskyy (2004) and Huang et al. (2003)).

Notable exceptions - applying soft computing to operational mea-
surements - include Pedersen and Larsen (2009), Besikci et al. (Bal
Beşikçi et al., 2016) and Radonjic and Vukadinovic (2015). Pedersen
and Larsen (2009) also used an Artificial Neural Network approach to
ship power prediction, looking at predictions over 10min periods, they
used a Bayesian learning scheme. Four variables were investigated; ship
speed, relative wind speed and direction, air temperature and sea water
temperature. The sampling time was every 1 s, but these measurements
were inconsistent, sometimes with gaps of more than 10 s; power and
speed were updated at a different time period, every 13 s. Samples with
excessive variance in the heading were excluded. The relative error of
the predictions was less than 2.7% for the mean propulsive power over

10min periods. This was seen to be significantly better than empirical
or data-driven methods based on towing tank tests (e.g. Holtrop
(1984)). Besikci et al. (Bal Beşikçi et al., 2016) predict the fuel con-
sumption of a vessel but use data from ‘noon reports’. The parameters
considered for fuel prediction are ship speed, revolutions per minute
(RPM), mean draft, trim, cargo quantity on board, wind and sea effects,
in which output from the ANN is fuel consumption. Only 233 points of
data are used with the best prediction being reached with 12 neurons in
one hidden layer which provides better performance than multiple re-
gression analysis. Artificial Neural Networks have also been used to
predict power for two boats by Radonjic and Vukadinovic (2015) but
the data used was from full scale trials, not measured from day to day
use of a ship. Their results only concentrated on the ship speeds effect
on power so predicting ship performance in weather is not possible
from this model. The data used to train their networks includes vessel
specifications such as length to beam ratio, this means a network
trained on one vessels data will never be able to be used on another
vessel, a vital application of this method. Importantly the focus of all of
these approaches, marine or non-marine, is on the accuracy of the
power prediction, but there is limited evidence of understanding how
physics dependant these models are.

There are currently limited efforts to use machine learning tools to
predict ship power from real data, those that do use only a few input
parameters. The focus for the available attempts is on the accuracy of
prediction rather than the relationship between inputs and outputs,
which will be vital to make the most of these tools. This paper presents
an application of machine learning tools on measured ship data to
predict shaft power in a range of ship and sea conditions. The focus will
be on creating networks which approximate the relationships between
inputs and outputs, physics-based, and not solely on the accuracy of the
results, like much of the literature. Of the six well documented appli-
cations of neural networks to ship propulsion prediction, five ((Bal
Beşikçi et al., 2016) (Pedersen and Larsen, 2009) (Leifsson et al., 2008)
(Petersen et al., 2012) (Radonjic and Vukadinovic, 2015)) use one
hidden layer with less than 50 neurons. A two layer neural network has
also been applied (Radonjic and Vukadinovic, 2015), although the
number of neurons in the layers is not specified. Previous studies refer
to whether a function can be found that gives high accuracy, this does
not necessarily imply the network will easily be able to find the real
representation as many networks suffer from poor extrapolation (Jain
and Deo, 2006), perhaps indicating that they have not found the real
representation. Shallow networks can memorise data but are poor at
generalisation, deeper networks are capable of learning features at
various levels of abstraction (Najafabadi et al., 2015) allowing explicit
development of areas of the network to handle the weaker relationships
between inputs and outputs. This can improve model generalisation
(Lawrence et al., 1996) and so it is proposed that the use of larger
networks will improve the ability to extrapolate beyond the available
input data by becoming more physics-based. Guidance is given on the
quantity of data required for this type of analysis and the type of ar-
chitecture required to give a balance between accuracy while retaining
a basis in the underlying physics of the ship's behaviour. The developed
method is compared to a regression used on the same dataset, to
highlight the differences in the machine learning methods and potential
areas where current models might be improved. A method capable of
determining the influence of weather on ship power performance al-
lows its use in both weather routing and in providing a correction from
measured data in a range of conditions back to a calm water, or re-
ference, condition. The latter may provide more data for analysis of a
range of ship operational and design effects, Dinham-Peren and Dand
(2010).

2. Artificial neural networks

Artificial Neural Networks are collections of neurons that are
grouped into layers with weighted connections, with a simple
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