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a b s t r a c t

This paper describes an accurate and computationally efficient surrogate method, known as the poly-
nomial dimensional decomposition (PDD) method, for estimating a general class of density-based f-
sensitivity indices. Unlike the variance-based Sobol index, the f-sensitivity index is applicable to random
input following dependent as well as independent probability distributions. The proposed method in-
volves PDD approximation of a high-dimensional stochastic response of interest, forming a surrogate
input–output data set; kernel density estimations of output probability density functions from the sur-
rogate data set; and subsequent Monte Carlo integration for estimating the f-sensitivity index. Developed
for an arbitrary convex function f and an arbitrary probability distribution of input variables, the method
is capable of calculating a wide variety of sensitivity or importance measures, including the mutual
information, squared-loss mutual information, and 1-distance-based importance measure. Three nu-
merical examples illustrate the accuracy, efficiency, and convergence properties of the proposed method
in computing sensitivity indices derived from three prominent divergence or distance measures. A finite-
element-based global sensitivity analysis of a leverarm was performed, demonstrating the ability of the
method in solving industrial-scale engineering problems.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Global sensitivity analysis rooted in the output variance has
been a longstanding staple for modeling and simulation of
complex systems [1–4]. In many applications, however, the
variance provides a restricted summary of output uncertainty.
Therefore, sensitivity measures derived solely from the variance
should be guardedly interpreted. A more rational sensitivity
analysis should account for the entire probability distribution of
an output variable, meaning that the probabilistic character-
istics above and beyond the variance should be considered [5–
9]. Addressing this fundamental concern has triggered the de-
velopment of a generalized density-based sensitivity index, re-
ferred to as the f-sensitivity index, which is founded on the
well-known f-divergence between conditional and uncondi-
tional output probability measures [6]. Unlike the variance-
based Sobol index [1], the f-sensitivity is applicable to random
input following dependent as well as independent probability
distributions. Since the class of f-divergences supports numer-
ous divergence or distance measures, a bevy of density-based
sensitivity measures are possible, including the mutual in-
formation [10], squared-loss mutual information [11], and

1-distance-based importance measure [5], to name a few,

providing diverse choices to sensitivity analysis. A few re-
searchers have applied existing divergence or distance measures
for sensitivity analysis of engineering systems [12–15].

While the formulation of the f-sensitivity index is not overly
complicated, its calculation in general is more intricate than the
calculation of the variance-based sensitivity index. This is chiefly
because the probability density functions required in defining the
convex function f are harder to estimate than the variance. If the
function f is already selected, resulting in a specific sensitivity
index, then one can exploit the functional structure of f to devise
accurate and efficient methods of calculation. This is exemplified
in the works of Borgonovo [5], Liu and Homma [16], and Wei et al.
[17], which present several estimation procedures for calculating
the 1-distance-based importance measure. Here, the author
delves into calculating the f-sensitivity index derived from a
general convex function f, so that the method proposed is ap-
plicable to a host of density-based sensitivity indices. Nonetheless,
if the sample size concomitant with a required accuracy in esti-
mating the sensitivity index is very large, say, in the order of
millions or more, then existing methods [5,16,17] will be limited to
problems or functions that are inexpensive to evaluate. In a
practical setting, however, the response function is often de-
termined via time-consuming, costly finite-element analysis (FEA)
or similar numerical calculations. In which case, an arbitrarily
large sample size is no longer viable, and hence alternative routes
to estimating the output probability densities, leading to the f-
sensitivity index, should be explored.
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This paper presents an accurate and computationally efficient sur-
rogate method, known as the polynomial dimensional decomposition
(PDD) method, for estimating a general class of density-based f-sensi-
tivity indices. The method is based on (1) PDD approximation of a
high-dimensional stochastic response, forming a surrogate input-out-
put data set; (2) kernel density estimations (KDEs) of output prob-
ability density functions from the surrogate data set; and (3) sub-
sequent Monte Carlo integration for estimating the f-sensitivity index.
Section 2 formally defines the f-sensitivity index, summarizes its fun-
damental properties, and cites a few special cases. Section 3 briefly
reviews the PDD approximation and explains how the integration of
the PDD approximation with KDE leads to calculating the f-sensitivity
index. Numerical results from two mathematical functions, as well as
from a computationally intensive solid-mechanics problem, are re-
ported in Section 4. Finally, conclusions are drawn in Section 5.

2. A general sensitivity measure

Let ={ …} : 1, 2, , = ∪ { } : 00 , =( − ∞ ∞) : , , and =[ ∞)+ : 0,0
represent the sets of positive integer (natural), non-negative in-
teger, real, and non-negative real numbers, respectively. For ∈ k ,
denote by k the k-dimensional Euclidean space and by k

0 the k-
dimensional multi-index space. These standard notations will be
used throughout the paper.

2.1. f-Divergence

Let Ψ( ), be a measurable space, where Ψ is a sample space
and is a s-algebra of the subsets of Ψ, and μ be a s-finite
measure on Ψ( ), . Let be a set of all probability measures on
Ψ( ), , which are absolutely continuous with respect to μ. For two
such probability measures ∈P P,1 2 , let μdP d/1 and μdP d/2 denote
the Radon–Nikodym derivatives of P1 and P2 with respect to the
dominating measure μ, that is, μ< <P1 and μ< <P2 . For abso-
lutely continuous measures in terms of probability theory, take Ψ
to be the real line and μ to be the Lebesgue measure, that is,

μ ξ=d d , ξ ∈ , so that μdP d/1 and μdP d/2 are simply probability
density functions, denoted by ξ( )f1 and ξ( )f2 , respectively.

Let [ ∞) → ( − ∞ ∞]f : 0, , be an extended real-valued function,
which is (1) continuous on [ ∞)0, and finite-valued on ( ∞)0, ;
(2) convex on [ ∞)0, ; (3) strictly convex at t¼1; and (4) equal to
zero at t¼1, that is, ( ) =f 1 0. The f-divergence, describing the
difference or discrimination between two probability measures P1
and P2, is defined by the integral [18–21]
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The divergence measure in Eq. (1) was introduced in the 1960s by
Csiszár [18,19], Ali and Silvey [20], and Morimoto [21].

2.2. f-sensitivity index

Let Ω( )P, , be a complete probability space, where Ω is a
sample space, is a s-field onΩ, and → [ ]P: 0, 1 is a probability
measure. With N representing the Borel s-field on N , ∈ N ,
consider an N-valued absolutely continuous random vector

Ω=( … ) ( ) → ( )X XX : , , : , ,N
N N

1 , describing the statistical un-
certainties in all system and input parameters of a general sto-
chastic problem. The probability law of X, which may comprise
independent or dependent random variables, is completely de-
fined by its joint probability density function → + f : N

X 0 . Let u be
a non-empty subset of { … }N1, , with the complementary set
− ={ … }⧹u N u: 1, , and cardinality ≤ | | ≤u N1 , and let

= ( … )| |X XX , ,u i i u1 , ≤ < ⋯ < ≤| |i i N1 u1 , be a subvector of X with

=− { … } ⧹X X:u N u1, , defining its complementary subvector. Then, for a
given ∅ ≠ ⊆ { … }u N1, , , the marginal density function of Xu is

∫( ) = ( ) −−| |
f f dx x x:u uX Xu N u .

Let ( ) = ( … )y y X XX : , , N1 , a real-valued, continuous, measurable
transformation on Ω( ), , define a general, square-integrable stochastic
response function of interest. Define = ( )Y y X: to be the associated
output random variable. Denote by PY and |PY Xu the output probability
measures and by ξ( )fY and ξ( | )|f xY uXu

the probability density functions
of random variables Y and |Y Xu, respectively, where |Y Xu stands for Y
conditional on Xu, which is itself random. Setting =P PY1 , =f fY1 ,

= |P PY X2 u, and = |f fY X2 u
in Eq. (1), the f-divergence between the un-

conditional and conditional probability measures of Y becomes
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For density-based importance analysis, suppose that the sensi-
tivity of Y with respect to a subset Xu, ∅ ≠ ⊆ { … }u N1, , , of input
variables X is desired. As unveiled in a prequel [6], such a sensitivity
measure can be linked to the f-divergence in Eq. (2). However, the f-
divergence is random because Xu is random. Therefore, apply the
expectation operator with respect to the probability measure of Xu

on Eq. (2), thereby defining the f-divergence-rooted f-sensitivity
index [6]

( )= ∥ ( )|
⎡⎣ ⎤⎦H D P P: 3u f f Y YX X, u u

of Y for Xu. Applying the definition of the expectation operator in
Eq. (3) and then substituting the expression of ( ∥ )|D P Pf Y Y Xu from Eq.
(2) yields the f-sensitivity index
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where | =PY X xu u and ξ( | )|f xY uXu
are the probability measure and the

probability density function, respectively, of Y conditional on
=X xu u, and ξ( )f x ,Y uX ,u

is the joint probability density function of
( )YX ,u . The last equality in Eq. (4) is formed by recognizing

ξ ξ( ) = ( | ) ( )|f f fx x x,Y u Y u uX X X,u u u
and is useful for calculating the sen-

sitivity index, to be discussed in Section 3.

2.3. General properties

It is important to emphasize a few general properties of the f-
sensitivity index Hu f, inherited from the f-divergence measure. The
properties, originally derived in a prior work [6], are described in
conjunction with six propositions as follows.

Proposition 1 (Non-negativity). The f-sensitivity index Hu f, of Y for
Xu, ∅ ≠ ⊆ { … }u N1, , , is non-negative and vanishes when Y and Xu

are statistically independent.

Proposition 2 (Range of values). The range of values of Hu f, is

≤ ≤ ( ) + ( ) ( )⁎H f f0 0 0 , 5u f,

where ( ) = ( )→ +f f t0 limt 0 and ( ) = ( ) = ( )⁎
→ →∞+f tf t f t t0 lim 1/ lim /t t0 .

Proposition 3 (Importance of all input variables). The f-sensitivity
index { … }H N f1, , , of Y for all input variables = ( … )X XX , , N1 is

= ( ) + ( ) ( ){ … }
⁎H f f0 0 , 6N f1, , ,
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