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ARTICLE INFO ABSTRACT

Internal gaseous velocity distribution and gas loss are significant and interconnected mechanisms of ventilated
supercavitating flows. Considering gas-vapor-water momentum interactions and vapor-water mass transport, a
multi-fluid model has been established for high speed ventilated supercavitating flows. Based on the model, the
velocity distributions in the longitudinal and cross-sectional planes are analyzed to clearly reveal the gas loss
mechanism for the flows around cavitator and body. For the former, two vortex cores are formed in the long-
itudinal plane and are symmetrically distributed about the longitudinal axis. Most inner regions in the cavity
cross section are occupied by circulation flows; when passing the vortex center, the direction of the velocity
changes, and the component in the radial direction increases. The gas departs to wake flows in the outermost
regions close to the section boundary. The velocity distribution law in a characteristic cross section through
vortex cores does not depend on cavitation number. For the supercavitating body, there is a similar entrainment
mechanism, and multiple axisymmetrical vortices may be distributed inside the cavity. The velocity distributions
go through turning points in the characteristic sections covering the inner body, whereas the distribution has a
monotonic trend in the section without the inner body near the body tail. The tail pressure gradient influences
velocity differences in the inner regions of the sections close to the supercavity tails at different cavitation
numbers. Using computations of the flows at different Reynolds and cavitation numbers, the dependence of gas
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loss on Reynolds number is also presented.

1. Introduction

Improved theories and technologies of ventilated supercavitating
flows will accelerate the development of underwater high-speed ve-
hicles. Subsequent to observations of drag reduction due to super-
cavitation, significant advances have been made in understanding the
formation, stability and hydrodynamic forces of supercavitating flows
(Stinebring et al., 2002; Kirschner et al., 2001; Lindau and Kunz, 2004;
Lu et al., 2007; Wei et al., 2007; Zou and Liu, 2015a). Only a few
studies have focused on internal flow structures of ventilated super-
cavitating flows (Kinzel et al., 2009; Savchenko and Savchenko, 2012).
Flow velocity distribution inside high-speed supercavity remains to be
studied further, and those distribution laws determine the gas loss
mechanisms closely related to the stability (Paryshev, 2003) and con-
trol (Zou and Liu, 2015b) of flows around vehicles. By and large, there
are two gas loss regimes, i.e., two vortex tubes and toroidal vortices,
which were experimentally well observed by Epstein (1973), and re-
search developments were discussed by Zou and Liu (2015b). Although
two vortex tubes are often found in water tunnels with small Froude
numbers (Kawakami and Arndt, 2011), the toroidal vortex mode
usually dominates gases departing from ventilated supercavities at high

Froude numbers caused by high speeds in unbounded flows. The tran-
sition modes between the two mechanisms were further revealed by
Karn et al. (2015, 2016) using water tunnel experiments. Epstein's en-
trainment model has been widely accepted for vortex tubes (Epstein,
1961). In the case of the toroidal vortex mode focused on here, a re-
entrant jet occurs in the supercavity's tail under the action of the ad-
verse pressure gradient, where the gas-liquid mediums collide to form
foam structures. Some of the foams fill the cavity end, and the others
leave with non-condensable gas along the cavity wall in the form of
toroidal vortices (Wang et al., 2015). Logvinovich (1969) modeled this
gas loss using a dimensional analysis method when gravity effect is not
considered. The model is suitable for the case that cavitation number
without the action of ventilation approached natural one. Further, the
gas entrainment theoretical assumption made by Spurk (2002a) has
been experimentally confirmed (Savchenko and Savchenko, 2012).
Based on the homogenous multiphase model, a local gas entrainment
rate was defined by Kinzel et al. (2009) to show internal gaseous
streamlines for ventilated supercavitating flows, and a similar gas loss
mode also applies to the main structure of the supercavity with two
vortex tubes. The escaped gas finally occupies the entirety of the cross
sections of the vortex tubes.
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Considering momentum interactions and mass transport between
phases, the gas-vapor-water multi-fluid model, which is based on the
theory for nonhomogeneous multiphase flows, is established for ven-
tilated supercavitating flows in the CFD solver CFX. Because each phase
is respectively solved in the model, ventilated supercavitating flows at
high speeds can be simulated to directly determine the internal gaseous
velocity field. The velocity distributions were analyzed to clearly reveal
the gas loss mechanisms in the longitudinal and cross-sectional planes.
By simulating the flows at different Reynolds and cavitation numbers,
the dependence of gas loss on Reynolds number was obtained. The
analyses of the internal velocity field and gas loss law aid in deepening
the understanding of the gas-leakage mechanism for the dynamics
model of the maneuvering ventilated supercavity (Zou et al., 2016) and
can provide greater detail for models and methods used to control su-
percavitating flows (Yu et al., 2013; Zou and Liu, 2015b).

2. Multi-fluid model and numerical method

In a ventilated supercavitating flow, there is an obvious gas-liquid
phase interface, except in the tail closure region. The flows inside and
outside the cavity differ fundamentally and interact among each other
(Yu et al., 2010; Xiang et al., 2011). Flow interactions in different
phases are inevitable and can be considered sequentially (Kunz et al.,
2003), such that the two-fluid model is suitable for describing venti-
lated supercavitating flows (Yu et al., 2012) alongside microbubble
boundary layer flows to achieve drag reduction using bubble dynamics
and the mass transport mechanism (Kunz et al., 2007). However, flow
parameters may be more complex in unsteady flows, and natural ca-
vitation can occur when liquid pressures drop below saturated vapor
pressure. Taking into further account the vaporization effect in high-
speed flows, a gas-vapor-water multi-fluid model is developed for the
flows here.

2.1. Governing equations

Based on the theory of nonhomogeneous multiphase flows, the
governing equations consist of the continuity and momentum equations
of each phase and the volume conservation and pressure constraint
equations if supercavitating flows are considered to be approximately
isothermal. Momentum transports between phases depend on the in-
terphase contact area. According to actual flow states, the mixture
models are applied to the interfacial transfers between water and vapor
and between gas and vapor. The free surface model is applied between
gas and water. The Rayleigh-Plesset equation provides the basis for the
mass sources' control of vapor generation and condensation.

The respective continuity equations for each phase are
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where y, p and U are the volume fraction, density and velocity, re-
spectively, v~ and mt are the mass transfer rates of condensation and
vaporization, and subscripts w, v and g denote the water, vapor and gas
phases, respectively.

The momentum equations for the three phases are
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where p and u are the pressure and dynamic viscosity, respectively,
I'j3Us — T#Uy, is the momentum transfer of phase o induced by the
mass transfer between phases @ and 3, and g is the gravitational ac-
celeration. M is the interfacial force due to the presence of other
phases:
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where M, is the interfacial force acting on phase a, Cg, is the drag
coefficient between two different phases, o, is the mixture density,
Pag = YuPx + VgPs> Aqg is the interfacial area per unit volume, where
A = 2|Vya||Vyﬁ|/(|Vya| + |Vyﬁ|) for the free surface model and
Aqg = ¥, ¥p/dag for the mixture model, and d,g is the mixture length
scale.

Combining the phase continuity equations with the constraint
condition on the phase volume fractions, , + ¥, + ¥, = 1, the volume

conservation equation yields
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where Sy, is the mass source of phase «, I3 is the mass flow rate from
phases 8 to « per unit volume, and N, is the phase number.

To close the set of hydrodynamic equations, the constraints on
pressure are given in the following form, whereby all of the phases
share the same pressure field:
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2.2. Turbulence model

The shear stress transport (SST) model based on k — w (Menter,
1994) accounts for the transport of the turbulent shear stress and gives
reasonably good predictions of the onset and amounts of flow separa-
tion under adverse pressure gradients. The model is suitable for simu-
lating ventilated supercavitating flows and for analyzing gas entrain-
ment (Yu et al., 2010). The model uses the k — w model in the near-wall
region and the k — £ model in the free-stream, i.e., it combines the best
of the two models, where the w-equation is different from that of the
standard k — ¢ model. Grids are clustered at the wall to guarantee a
range of 0 < y* < 30 for the separated flows when the SST model is
used. Based on the grid spacing near the wall, the switch between a wall
function formulation and a low-Reynolds number form is made.
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where y, is formulated as u, = aypok/max(oqw, SF,). The model con-
stants are obtained by weighting the two k — ¢ and k — w models (Owis
and Nayfeh, 2003):
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where ¢, and ¢, are the constants of the k — w Wilcox model (Wilcox,
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