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A B S T R A C T

Dynamic response of offshore structures can be influenced due to the water-structure interaction. The water-
structure interaction can be simply represented by added mass in earthquake response analysis. The added mass
for a circular cylinder can be obtained by analytical method. However, the added mass for an arbitrary shape of
structure is rather difficult to be solved by analytical method. In this study, a substructure method for analysis of
the seismic response of an arbitrary shape of structure is presented. The finite element technique incorporating
the exact artificial boundary condition presented for simulating the far field of the infinite water is applied to the
evaluation of added mass for offshore structures, where the exact added mass matrix is fully populated and
symmetrical. The structure is idealized as a three-dimensional finite element model system. Firstly, the presented
method is to investigate the seismic response of circular tapered cylinder vibrating in water. Secondly, a lumped
added mass matrix is adopted to replace the exact added mass matrix. Thirdly, a simplified formula is presented
to evaluate the added mass of the circular tapered cylinder.

1. Introduction

Offshore and coastal structures, such as stock tanks, intake towers,
bridge piers and offshore wind turbines, may be subjected to great
hydrodynamic pressures during severe earthquakes. It has been de-
monstrated that the earthquake-induced hydrodynamic pressures may
have a significant influence on the dynamic response of the structures
(Liaw and Chopra, 1974). Interaction with water also modifies dynamic
properties of the structures (Han and Xu, 1996). The experiment con-
ducted by Wei et al. (2013) also indicated that water-structure inter-
action had significant effects on the dynamic response of bridge pile
foundations submerged in water. Therefore, it is necessary to study the
earthquake-induced hydrodynamic pressures for the seismic design of
the offshore and coastal structures.

Many researchers have investigated earthquake-induced hydro-
dynamic pressure on a circular cylinder. Liaw and Chopra (1974) in-
itially investigated the significance of hydrodynamic pressure on the
dynamic response of cantilever circular cylinders. The authors dis-
covered that water compressibility was negligible for slender cylinders.
If the water is incompressible, the seismic hydrodynamic pressure is
equal to a product of the constant mass of water and the acceleration of
cylinder. Dynamic responses of circular cylinders subjected to hor-
izontal ground excitation were also studied by Williams (1986) and

Tanaka and Hudspeth (1988). A simple formula for evaluating the
natural frequencies of a flexible circular cylinder vibrating in water was
presented by Han and Xu (1996). Then, Chen (1997) presented a finite-
difference scheme to solve nonlinear hydrodynamic pressures acting on
a circular cylinder. Recently, a series of simplified formulas for evalu-
ating the earthquake-induced hydrodynamic pressure on a circular
cylinder were developed. Li and Yang (2013) presented an improved
method of hydrodynamic pressure calculation for circular hollow cy-
linders. Yang and Li (2013) proposed the expanded Morison equation to
calculate the hydrodynamic force of hollow circular piers caused by
inner water. Du et al. (2014) proposed a simplified formula of hydro-
dynamic pressure on rigid circular cylinders considering water com-
pressibility in the time domain. Wei et al. (2015) developed simplified
methods for efficient seismic design and analysis of water-surrounded
composite axisymmetric structures with uniform circular cross-section
for outside façade. Jiang et al. (2017) developed a simplified formula
for the hydrodynamic pressure on a circular cylinder, where the main
parameters were radius of the cylinder and water height. In addition,
Liao (1985) and Williams (1987) investigated the hydrodynamic in-
teractions between submerged circular cylinders.

However, only a few studies were conducted to investigate the
earthquake-induced hydrodynamic pressure on axisymmetric struc-
tures. For an arbitrary shape of structure, the earthquake-induced
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hydrodynamic pressure is rather difficult to be obtained by an analy-
tical method. Liaw and Chopra (1975) utilized the finite element
method to compute the earthquake response of axisymmetric intake
towers surrounded by water. Based on the use of a complete and non-
singular set of Trefftz function, Sun and Nogami (1991) presented a
semi-analytical and semi-numerical approach to evaluate the hydro-
dynamic pressure on axisymmetric offshore structures. Park et al.
(1991) adopted the finite element technique incorporating the infinite
element to evaluate the hydrodynamic pressure on offshore structures.
Avilés and Li (2001) studied the effect of the seabed flexibility on hy-
drodynamic pressures on axisymmetric offshore structures.

The substructure method is a preferable approach for analysis of
structures interaction with water (Tsai and Lee, 1991), which is to
consider the structure-water system as composed of two substructures,
namely the structure and the body of water. This technique avoids di-
rect analysis of the large water-structure system. Firstly, a substructure
model is developed for the earthquake response analysis of circular
tapered cylinders in Section 2, where the hydrodynamic terms that are
the product of added mass matrix and the acceleration of the cylinder
are determined by finite element analysis of the fluid system. Secondly,
a simplified model for the added mass matrix is proposed in Section 3.
Thirdly, the simplified formula for the hydrodynamic pressures acting
on circular tapered cylinders is presented by curve fitting method in
Section 4.

It should be noted that the present work can be simplified as a cy-
linder oscillatory in water. Large amount of studies has been conducted
to investigate a circular cylinder oscillatory in water (Sarpkaya, 1986,
2002; Meneghini and Bearman, 1995; and Iliadis and Anagnostopoulos,
1998). Comparing with the present work, the work conducted by
Sarpkay corresponds to much smaller diameter condition. However, the
present model cannot be used to predict the conditions tested by
Sarpkaya because the viscous of the fluid is ignored in the present
study. In the future work, we will improve the present model to in-
vestigate the cylinder oscillatory in viscous fluid.

2. Substructure model of water-cylinder system

A circular tapered cylinder surrounded by water is shown in Fig. 1,
which extends from the sea bottom to above the surface along the z-
axis. The cylinder whose axis line is coinciding with the z-axis is treated
as a three-dimensional structure and the height of the cylinder is H. The
water depth is h, the foundation is assumed be rigid, and the earthquake
excitation is assumed to propagate along the x-direction. The water-
cylinder interaction system is initially at rest. As shown in Fig. 2, to
model the fluid domain efficiently, the whole fluid domain is divided
into two subdomains: the near field Ω1 surrounding the cylinder with
the outer cylindrical boundary surface at finite distance R (ΓC) from the
origin, and far field Ω2 outside of Ω1.

2.1. Equations of motion of cylinder substructure

For the case of dynamic analysis of the water-cylinder system, the
cylinder substructure can be discretized by using the FEM. In this study,
an eight-node hexahedral element is adopted to discrete the three-di-
mensional cylinder (Chandrupatla and Belegundu, 2012). Thus, the
dynamic equations of motion is given by
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where tU( ) is the vector of nodal point displacements relative to the
ground; tU̇( ) is the vector of nodal point velocities relative to the
ground; tÜ( ) is the vector of nodal point acceleration relative to the
ground; M, C and K are the symmetrical mass, damping, and stiffness
matrices for the cylinder structure, respectively; tF( ) is the vector of
hydrodynamic forces acting on the cylinder surface arising from the
hydrodynamic pressure of the water; and tü ( )g is the acceleration of the
ground motion.

2.2. Finite element model for the near field of the water

Assuming water incompressible and inviscid, the hydrodynamic
pressure distribution is governed by the Laplacian equation. In
Cartesian coordinate system, the governed equation is expressed as
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in which p (x, y, z, t) is the hydrodynamic pressure, and x, y, z are
Cartesian coordinates.

The hydrodynamic pressure distributions can be obtained by solving
Eq. (2) with the following boundary conditions and zero initial condi-
tions.

(1) Surface at the floor of the water
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(2) Surface at the free surface of the water with neglecting the surface
wave effect

==p 0z h (4)

(3) Surface at the interface of the water and cylinder
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(4) The initial conditions are
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0 (6)Fig. 1. Definition of the problem.

Fig. 2. Analysis model of the fluid domain.
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