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A B S T R A C T

In order to conduct the comprehensive analysis of fluid-structure interactions, acoustic radiation and acoustic
propagation, a three-dimensional sono-elastic method in the frequency domain is proposed in this paper. In this
method, the three-dimensional hydroelasticity theory of floating structures is incorporated with the hydro-
acoustic propagation theory by introducing frequency domain Green's functions appropriate to the ocean hydro-
acoustic waveguide environment. The simple source boundary integral approach is adopted to obtain the sono-
elastic response in the frequency domain. In order to deal with the irregular frequency problem in this approach,
a Closed Virtual Impedance Surface (CVIS) method is put forward. At last, the sono-elastic method is validated
by calculating the acoustic radiation of a floating elastic spherical shell and an experiment of the underwater
acoustic radiation of two ring-stiffened cylindrical shell models.

1. Introduction

For a long time, the issue of floating structures' vibration in the
water along with the acoustic radiation and scattering has been studied
separately from the issue of acoustic waves' propagation in the ocean
waveguide environment. In the former issue, the sea water is modelled
as ideal acoustic medium, and the influence of free surface and seabed
boundary was often ignored. As for the latter issue, the investigations of
the transmission of acoustic waves mainly focused on the monopole
point source. In practice, these are two interrelated issues that need to
be considered simultaneously. With the development of theoretical
methods and computational techniques, it will be possible to perform
an integrated calculation and analysis for problems in both of these two
aspects, including the floating structures' fluid-structure interactions,
the acoustic radiation and the acoustic propagation in the ocean wa-
veguide environment. In a broad sense, this issue belongs to the cate-
gory of hydroelasticity. But the water here must be treated as com-
pressible acoustic medium, which differs from the conventional
hydroelasticity studies (Wu, 1984; Bishop et al., 1986; Chen et al.,
2006; Gao et al., 2011).

During the past few decades, researchers have developed various
methods to deal with the problem of floating structures' acoustic ra-
diation and scattering in the ideal acoustic medium. For instance, some
analytical methods are established to evaluate the acoustic radiation of

structures with regular shapes, such as the elastic spherical shell, the
cylindrical shell and the equidistantly stiffened single or double cy-
lindrical shell (Burroughs, 1984; Junger and Feit, 1986; Skelton and
James, 1997). The approaches appropriate for the structures with
complex shapes include the finite element/finite element method
(FEM/FEM) (Hunt et al., 1974, 1975), the finite element/finite ele-
ment/infinite element method (FEM/FEM/IEM) (Astley and Macaulay,
1994; Burnett and Holford, 1998) and the finite element/boundary
element method (FEM/BEM) (Chen and Schweikert, 1963; Everstine
and Henderson, 1990; Giordano and Koopmann, 1995; Tong et al.,
2007; Peters et al., 2014). According to the finite element/finite ele-
ment method (FEM/FEM), both of the floating structure and the water
medium are modelled with discrete finite elements. Artificial absorbing
boundary conditions are set at the edge of the water area. When it
comes to acoustic radiation problems in broad water areas, the finite
element method cost a large amount of computation; thus only the
sound field near the structure can be calculated and given. When using
the finite element/finite element/infinite element method (FEM/FEM/
IEM), the floating structure and the near-field acoustic medium are
modelled with finite elements, while the far-field acoustic medium is
modelled with infinite elements. At present, the research on this
method is still inadequate. The strategy of the FEM/BEM method is
modelling the floating structures with finite elements and the fluid field
with boundary elements on the wetted surface based on the boundary
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integral equation. In this method, the Green's functions used to describe
the acoustic propagation in the fluid field are often expressed in ana-
lytical forms. As a consequence, this method has the advantage of high
precision and effectiveness when it's used to deal with the acoustic
problems in the infinite or half-infinite fluid field. The FEM/BEM
method, which avoids the deficiencies of the FEM/FEM method, is the
most commonly used method to solve the complex structures' sono-
elasticity problem in the low frequency band. Everstine and Henderson
(1990) regard the FEM/BEM method as the most practical way to cal-
culate the large-scale structures' acoustic radiation with high precision.

Historically, there are mainly two kinds of boundary element
methods (BEM) in the study of acoustics: the Helmholtz integral
method and the simple source method. When using these two kinds of
methods in practice, there is an irregular frequency problem, i.e., the
results near the irregular frequencies are often significantly distorted.
Strictly speaking, the irregular frequencies are of purely numerical
problem with no physical explanation. It has been proved in a mathe-
matical manner that there is no solution at the irregular frequencies in
the simple source method while the solution is not unique at the irre-
gular frequencies in the Helmholtz integral method (Schenck, 1968).
Since the 1970s, the Helmholtz integral method has been widely used in
acoustics, for the reason that various methods are created to solve the
problem of irregular frequencies in this method (Schenck, 1968; Burton
and Miller, 1971; Wu and Seybert, 1991). On the contrary, improve-
ment is still needed to deal with the irregular frequency problem in the
simple source method.

In this paper, the three-dimensional hydroelasticity of floating
structures (Wu, 1984; Bishop et al., 1986) is incorporated with the
hydro-acoustic propagation theory to gain a three-dimensional sono-
elastic analysis method in the frequency domain by introducing a fre-
quency domain Green's function appropriate to the hydro-acoustic
waveguide environment. This method makes it possible to implement a
unified analysis of fluid-structure interaction, acoustic radiation and
sound propagation. The details are given about how the simple source
boundary integral equation is theoretically derived from Helmholtz
boundary integral equation. It's pointed out that the irregular fre-
quencies in the simple source method are induced by the resonances of
imaginary inner fluid field. Taking this principle into consideration, a
closed virtual impedance surface is introduced in the imaginary inner
fluid domain to absorb the energy of acoustic vibration, thus elim-
inating the resonances and irregular frequencies. This method is named
as the Closed Virtual Impedance Surface (CVIS) method. According to
the simple source method, the acoustic field is obtained by the super-
position of a series of monopole point sources with different amplitudes
and phases distributed on the wetted surface of the floating structures.
Since the monopole source's acoustic propagation in the ocean wave-
guide environment has been widely studied (Jensen et al., 2011), lots of
existing results can be directly introduced into the calculation of
Green's functions used in this work.

According to classic method of three-dimensional hydroelasticity
(Wu, 1984; Bishop et al., 1986), the dry modals (the structure vibration
modals in vacuum) are selected as the generalized basis functions be-
cause they are orthogonal, complete and easy to solve. The effect of
fluid-structure interaction is reflected in the corresponding added mass,
radiation damping and generalized restoring coefficients. This ap-
proach has the advantage of high calculation efficiency and clear
physical meaning. Besides, it can separate the principal modes that
make a significant contribution to the vibration and acoustic radiation.
The advantages of this method are inherited in this work. With re-
ference to the general definition of hydroelasticity (Heller and
Abramson, 1959), the sono-elasticity mentioned in this work is defined
as a discipline that deals with the interactions between the inertia force,
the acoustic pressure in the water and the elastic force in the structures.

2. The sono-elasticity theory of ships in frequency domain

For the zero forward speed case, the fluid motion and responses of a
floating body are defined in an equilibrium coordinate system Oxyz
with the x-axis pointing towards the bow, the z-axis pointing upwards,
as shown in Fig. 1. The ship structure is assumed to be linear with small
motions and distortions about its equilibrium position. The displace-
ment at any point of the structure may be expressed as the super-
position of the principal modes in vacuum (Bishop et al., 1986):
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where Dr and q t( )r = ⋯r m( 1,2, , ) are respectively the principal modes
and principal coordinates, with the first six = ⋯r( 1,2, ,6) being the
rigid body modes.

During the process of structural vibration and acoustic radiation the
fluid restoring force is rather small and negligible. The generalized
equations of motion of the ship structure may be written in matrix form
as:

+ + = +t taq bq cq Ξ G¨ ˙ ( ) ( ) (2)

where a, b and c are matrices of generalized mass, generalized damping
and generalized stiffness of the dry modes. q is a column vector of the
principal coordinate. If there is no incident acoustic waves, and only
mechanical excitations are concerned in the present analysis of struc-
tural vibration and acoustic radiation problems, there exists generalized
radiation wave force tΞ( ) and generalized mechanical exciting force

tG( ).
If the fluid is inviscid and compressible, its flow is irrotational, the

fluid density is uniformly distributed and the amplitudes of acoustic
waves are small, there exists a velocity potential function Φ for de-
scription of the acoustic field caused by structural vibrations of a ship.
The total velocity potential Φ can be represented as the linear super-
position of the acoustic wave radiation velocity potential of each order:
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where φ x y z t( , , , )r is the r-th order acoustic wave radiation velocity
potential which is induced from the ship's vibration excited by the ex-
ternal loads.

The velocity of fluid is expressed as
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k are the unit vectors corresponding to the x, y, and z axis

respectively.
The sound pressure in the fluid field can be written as
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where ρ0 is the fluid density.
Assuming a time harmonic dependence in the form of eiωt in fre-

quency domain, the corresponding r-th radiation wave potential may be
represented as

= =φ x y z t φ x y z q t φ x y z q ω e( , , , ) ( , , ) ( ) ( , , ) ( )r r r r r
iωt (6)

Fig. 1. The equilibrium coordinate system.
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