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A B S T R A C T

Health monitoring of mooring lines is essential to ensure the safe performance of floating structures during the
service life. In the literature and offshore industries, damage diagnosis of mooring lines is based on fatigue
analysis by considering rope behavior. Mostly, this type of diagnosis is accomplished by the results, obtained
from the simulation model of mooring system. Further, one of the important factors in modeling is applying
uncertainties in the simulation model. In this paper, due to the complex behavior of mooring lines, a new design
of Radial Basis Function (RBF) neural network is proposed for damage diagnosis. Also, the modeling method is
based on Rod theory and Finite Element Method (FEM). In the proposed modeling process, for improving the
accuracy of the modeling, boundary conditions uncertainty are applied using Submatrix Solution Procedure
(SSP). Additionally, round-off error is removed by SSP. Finally, the proposed modeling and diagnosis are in-
vestigated experimentally. The obtained results showed that proposed RBF has better performance compared
with conventional one and other well-known methods in the literature.

1. Introduction

Mooring lines are one of the critical components in the offshore
structures such as TLP, floating vessels and wind turbines. Therefore,
many academic researchers are interested in studying the mooring
static and dynamic behavior. Moreover, because of the applied strong
forces in the floating structures due to initial tensions and sea waves,
the early diagnosis of mooring lines plays a crucial role in safe opera-
tion of these structures. The studies of the damage process in the
mooring lines are based on different parameters such as fatigue rate
analysis (Ma et al., 2013), strength capacity of a mooring system
(Brindley and Comley, 2014), fatigue damage (Philipp et al., 2014),
tension and durability of mooring lines (Christopher et al., 2000),
(Banfield et al., 2005), (Ridge, 2006) and the failure risk of the mooring
lines based on extended-period environmental loads (Huang and Pan,
2010). Thus, due to possible damages of mooring system, monitoring
and maintaining should be performed according to the above men-
tioned parameters. One of the most common diagnosis methods in this
field is based on Fuzzy logic (MentesIsmail, 2011), (Jahangiri et al.,
2016), (Jamalkia et al., 2016). Despite the many advantages of the
Fuzzy method in identifying severe damages, this method is not very
successful in identifying the small and moderate damages. Another

method for diagnosis is based on Fault-tolerant control (Fang et al.,
2015). In control methods, fault diagnosis is possible by using vibration
signals and structural reliability index. This type of diagnosis cannot be
used in the floating structures with moving parts such as wind turbines,
because in these structures, identification of defects in the moving parts
of the turbine and mooring lines from each other is impossible.

The most powerful methods for the diagnosis of the mooring sys-
tems are based on the computer simulation. In the field of the mooring
line modeling, the FEM is suggested as more accurate method.
Similarly, a significant research in the modeling with FEM is suggested
by reference (Tahar and Kim, 2008). In mentioned research, by in-
troducing shape functions and suitable numerical method for the so-
lution, the weak formulations for applying the FEM technique are
written. It should be noted that, the uncertainty should be considered
for accurate modeling of the mooring lines. Therefore, one of the most
important steps in damage diagnosing of the mooring lines is applying
the uncertainty in modeling of the mooring system (Vazquez-
Hernandez et al., 2006), (Zhang and Gilbert, 2006), (Montes-Iturrizaga
et al., 2007).

In this paper, firstly, SSP is employed to apply boundary conditions
uncertainty in modeling. Furthermore, SSP is used to avoid large
computational costs and round-off errors. Secondly, a new design of
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artificial neural networks (ANNs) is proposed for health monitoring of
the mooring lines. Selection of the proper ANN for specific case study is
based on the input data of the ANN. In RBF networks, a vector distance
is calculated directly (Euclidean distance), so RBF has more accurate
results than the vector inner product which is used in other ANNs. The
main disadvantage of conventional RBF is the limitation of the number
of input data for training the ANN. Subsequently, the proposed new
architecture of RBF is designed for solving the problems of conventional
one.

The remainder of the paper is organized as follows. In Section 2, we
start with modeling of the mooring systems by using the Rod theory,
FEM and SSP, and then the proposed modeling is validated experi-
mentally; Section 3 describes the uncertainties and damage classifica-
tion of the considered case study; Section 4 presents the new archi-
tecture of RBF; The achievable performance of proposed method and
other methods are investigated in Section 5; The conclusion of this
paper is presented in Section 6.

2. Modeling of mooring lines

To mitigate the motion of the floating structures, mooring lines with
different materials have been used in offshore industry. A steel wire
rope with chains at both ends has been installed for Spar platform in
deep water. Also, taut vertical mooring lines and tethers, composed of
several vertical steel pipes, are intended to be installed in the TLP.
Nowadays, synthetic mooring lines, made of polyester are considered as
a more efficient solution. These types of mooring lines are applied in
the floating structures in very deep water (over 6000 ft) (Young-Bok,
2003).

In this section, the static deflection of the polyester rope and the line
tension are obtained by using the catenary equations. In the catenary
equations, hydrodynamic forces on the line are not considered.
However, for consideration of hydrodynamic effects on the line, the
boundary and measurement uncertainties are used. Further, the strain
and stress of the rope with geometric nonlinearity are solved with the
beam theory using the updated Lagrangian approach. For this purpose,
the Tensioned string theory is applied. In this theory, the string is
modeled by using beam elements, where it is called the elastic Rod

theory (Tahar and Kim, 2008) which is based on the formula, derived
by Nordgren and Garret (Nordgren, 1974), (Garrett, 1982).

2.1. Rod theory

The behavior of a slender rod can be expressed in terms of the
variation of the rod position. A position vector r s t( , ) is the function of
the rod arc length “ s ” and time “ t ”. The Equations (1) and (2) are the
fundamental equations of motion for the elastic rod, applied to the FEM
formulation (Young-Bok, 2003).
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Where EI is the bending stiffness, ρ mass per unit length of the rod,
scalar function λ s t( , ) is called Lagrangian multiplier, ⎯→⎯w is the weight

of the rod per unit length, ∼T is the effective tension in the rod, and
⎯→⎯∼w is

the effective weight or the wet weight of the rod. Prime denotes the
derivative with respect to arc length s and the dot denotes the time
derivative. Also,

⎯→⎯
Fs is the hydrostatic force on the rod which is defined

as follows:
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Where
⎯→⎯
B is the buoyancy force on the rod per unit length, and P is the

hydrostatic pressure at the point →r on the rod.

2.2. Finite element method

As described in previous part of this section, the application of the
FEM is started on the Equation (2) and following equation:

Nomenclature

p i
1 First input vector that is closest to weight vector

Al Cubic shape function
p i

2 Second input vector that is closest to weight vector
a1 First layer output
Q Input vector/target pairs
a2 Second layer output
R Number of elements in input vector
⎯→⎯
B Buoyancy force on the rod per unit length
r Position vector
B Bias
s Arc length of the rod
b1 First layer bias
S1 Number of neurons in first layer
b2 Second layer bias
S2 Number of neurons in second layer
EI Bending stiffness
∼T Effective tension in the rod
⎯→⎯
Fs Hydrostatic force on the rod

t Time

F x( ) Sum square error
tQ Qth target vector
fnet Extracted features of model
⎯→⎯w Weight of the rod per unit length
IW First layer weight
⎯→⎯∼w Effective weight of the rod
K Number of classes
w Weight vector
LW Second layer weight
α Noise level parameter
m Midpoint of each class
μ Probability distribution
nc Number of input vectors are located from the training set
ρ Mass per unit length of the rod
P Hydrostatic pressure
λ Lagrangian multiplier
Pm Quadratic shape functions
σ Standard deviation
p Input vector
δij Kronecker Delta
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