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A B S T R A C T

This paper analyzes the dynamic behavior of a fluid-conveying pipe with different pipe end boundary conditions.
The pipe is considered to be an Euler-Bernoulli beam, and a motion equation for the pipe is derived using
Hamilton's principle. A semi-analytical method, which includes the differential quadrature method (DQM) and
the Laplace transform and its inverse, is used to obtain a model for the dynamic behavior of the pipe. The use of
DQM provides a solution in terms of pipe length whereas use of the Laplace transform and its inverse produce a
solution in terms of time. An examination of the results of sampling pipe displacement at different numbers of
sample points along the pipe length shows that the method we developed has a fast convergence rate. The
frequency and critical velocity of the fluid-conveying pipe derived by DQM are exactly the same as the exact
solution. The numerical results given by the model match well with the result obtained using the Galerkin
method. The effect on pipe displacement of the pipe end boundary conditions is investigated, and it increases
with an increase in the edge degrees of freedom. The results obtained in this paper can serve as benchmark data
in further research.

1. Introduction

The vibration of a fluid-conveying pipe is a concern in many fields,
such as marine engineering, aviation, construction machinery, chemical
engineering, and oil exploration and refining. Thus improved knowl-
edge of this phenomenon is widely applicable. A major risk for a free
spanning pipeline is the failure caused by fatigue associated with var-
ious loads. The relatively large amplitudes of the oscillations of a free
spanning pipe in vertical direction, caused by the external load, can
lead to fatigue damage to the pipeline. Being able to accurately model
the dynamic behavior of a fluid-conveying pipe is therefore important
for theory development and has practical engineering significance.

The dynamic behavior of a fluid-conveying pipe became one of the
hot topics since Brillouin (Paidoussis, 1998) first observed flow-induced
vibration. Long (1955) first studied the vibration characteristics of a
fluid-conveying pipe by experimental method, and observed that the
natural frequency of the pipe decreases with the increase of the internal
fluid velocity. Benjamin (1961a, 1961b) discussed the dynamic beha-
viors of a cantilevered fluid-conveying pipe, and found that flutter in-
stability occurs in the pipe. Gregory and Paidoussis (1966a, 1966b)
confirmed that the first unstable mode of the cantilevered fluid-con-
veying pipe is flutter instability instead of divergent instability through

theoretical and experimental method, and investigated the effects of the
mass ratio, damping and stiffness on critical velocity of instability. Chen
(1970) investigated the forced vibration of a fluid-conveying pipe.
Paidoussis and Issid (1974) gave the linear governing equation of the
fluid-conveying pipe considering a variety of factors, and studied the
vibration instability of the pipe under different boundary conditions.
Paidoussis (1987) published a review article on the instability of cy-
lindrical structures caused by fluid, which described the linear vibration
of the pipe in detail, and pointed out two instability phenomena,
namely flutter instability and buckling instability. More details on this
subject can be referred in some monographs and reviews (Paidoussis,
1987; Paidoussis and Li, 1993). A variety of calculation methods have
been proposed for the dynamic behaviors of the fluid-conveying pipe
due to its wide application. Ibrahim (2010, 2011) and Li et al. (2015)
have systematically summarized the progress of research into fluid-
conveying pipe vibrations. Dai et al. (2014) studied a flexible pipe
conveying fluctuating flows and analyzed the principal parametric re-
sonances during lock-in for each of the first two modes using the direct
perturbation method of multiple scales (MMS). He et al. (2017) en-
umerated the characteristics of vortex-induced vibrations in a pipe for
the first two locked-in models under quasi-static displacement condi-
tions using the Galerkin method. Li and Yang (2017) applied He's
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variational iteration method (HVIM) to obtain the critical flow velocity
and frequency of a fluid-conveying pipe under various boundary con-
ditions. Zhai et al. (2011) analyzed the dynamic response of a Ti-
moshenko pipeline (beam) under random excitation using the pseudo
excitation method and the complex mode superposition method.
Mohammadimehr and Mehrabi (2017) investigated the stability and
free vibration of double-bonded micro-composite-sandwich cylindrical
shells under magneto-thermo-mechanical loadings using the general-
ized differential quadrature method (GDQM). Kuiper and Metrikine
(2005) used power series expansion and D-decomposition to study the
stability of a vertically suspended free-hanging riser, and explained
instability at small velocities of convection. Lin and Qiao (2008) used
the differential quadrature method (DQM) to model the dynamical
behavior of a fluid-conveying curved pipe subjected to motion-limiting
constraints and harmonic excitation. Li and Yang (2014) obtained exact
solutions for forced vibration of a fluid-conveying pipe using the Green
function, and derived the natural frequencies of the fluid-conveying
pipe. Chatzopoulou et al. (2016) investigated the vibration and in-
stability of cyclically-loaded steel pipes during deep water reeling in-
stallation using the finite element method (FEM), and examined the
effects of the modulus and the damping factor of the linear viscoelastic
Winkler foundation and the fluid velocity on the resonance frequencies.
Ni et al. (2011) used the differential transformation method (DTM) to
analyze the vibration problem of a fluid-conveying pipe with several
typical boundary conditions, and obtained natural frequencies and
critical flow velocities for pipes. Hashemian and Mohareb (2016) sug-
gested the finite difference model to analyze the sandwich pipes with
thick cores subjected to internal and external hydrostatic pressure. Gu
et al. (2016) modeled the dynamic response of a fluid-conveying pipe
using a generalized integral transform technique (GITT), and analyzed
the effect of aspect ratio on deflection and natural frequencies. Yazdi
(2013) discussed the nonlinear vibration of doubly curved cross-ply
shells using the homotopy perturbation method (HPM).

Comprehensive reviews of the calculation methods for vibration of
fluid-conveying pipes are given in the above literature. However, a
semi-analytical solution for the dynamic behavior of a fluid-conveying
pipe has not yet been proposed. We propose a more accurate semi-
analytical methodology that incorporates the differential quadrature
method (DQM) and the inverse Laplace transform to investigate the
dynamic behavior of a fluid-conveying pipe.

2. Method

2.1. Laplace transform and its numerical inversion

The Laplace transform is a linear transform which is widely used in
structural dynamics. It can convert partial differential equations into
ordinary differential equations or transform ordinary differential
equations into algebraic equations (Liang et al., 2014). The Laplace
transform and its inverse have been successfully applied to investigate
the dynamic response of the structures subject to external load (Khalili
et al., 2009; Lou and Klosner, 1973). Suppose f (t) is a real-valued
function of time t, which defined in the real domain [0, +∞), the La-
place transform and its inversion are defined by:
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where L denotes the Laplace transform; L−1 denotes the inverse Laplace
transform; s is a complex number in the Laplace domain; si (i = 1, 2, 3,
…) are the singularities of f s( )͠ ; Re denotes the real part of the complex
number. Let s = α + iω, where α and ω are real numbers; the con-
vergence condition of (2) can be stated as α > α0=max [Re(si)].

Durbin (1974) proposed that for the interval (0, T/2), the Laplace
transform can be computed to any desired accuracy by the following

formula (Liang et al., 2014):
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where β = 5/T, T= 5× Td, Td is the observing period in the time
domain, and N is a large integer.

2.2. Differential quadrature method (DQM)

The differential quadrature method was first introduced into the
field of structural dynamics by Bert and Malik (1996). In order to
convert the derivative term with respect to the x coordinate to poly-
nomials, the differential quadrature method (DQM) is employed to
discretize the fundamental equations. Considering a continuous func-
tion f(x), the nth order partial derivative with respect to x at a given
point x = xi can be approximated by a linear weighted sum of function
values at all the sample points in the domain of x, that is (Liang et al.,
2015):
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where M is the number of sample points, and A(n) ij are the weighting
coefficients of the nth order derivative defined by:
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where i, j = 1, 2, …M, but i≠j, and the A(n) ii are defined as:
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3. Problem description

3.1. Governing equations

In this paper, we consider a linear elastic pipe of length L, which
internally conveys an incompressible fluid with a velocity v and which
is subjected to harmonic load q. The geometry and the Cartesian co-
ordinate system are shown in Fig. 1, in which the origin of the (x, y, z)
framework is considered to be located in space at the left end of the
pipe (Chen, 1970; Dai et al., 2014).

The motion of the pipe in the vertical (y–axis) direction has been
considered. In this paper, the following assumptions are made: (1) the
fluid within the pipe (internal fluid) is incompressible and has a con-
stant velocity; (2) the cross section of the elastic pipe is uniform, and
the effects of shear, torsion, and rotational inertia can be neglected; and
(3) the motion of the pipe is considered to be only in the vertical
(y–axis) direction.

Adopting a small deformation assumption and treating the pipe as
an Euler-Bernoulli beam, the equation for the motion of the pipe can be
derived using Hamilton's principle. The kinetic energy of the system
includes the kinetic energy of the pipe and the kinetic energy of the
internal fluid, and is described by the equation:
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where w refers to the deflection in the vertical (y–axis) direction, mp

and mf respectively denote the mass per unit length of the pipe and the
internal fluid. The deformation energy of the system is
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