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A B S T R A C T

A hydroelastic model is considered to examine the proliferation of water waves over little deformation on a
versatile seabed. The versatile base surface is modelled as a thin large plate and depends upon Euler-Bernoulli
beam equation. In such circumstances, two different modes of time-harmonic proliferating waves exist rather
than one mode of proliferating waves for any particular frequency. The waves with smaller wavenumber pro-
liferate along the free-surface and the other with higher wavenumber spreads along the versatile base surface.
The expression for first and second-order potentials and, henceforth, the reflection and transmission coefficients
upto second-order for both modes are acquired by the strategy in view of Green's function method. A fix of
sinusoidal swells is considered for instance to approve the scientific outcomes. It is seen that when the train of
occurrence waves engenders because of the free-surface unsettling influence or the flexural wave movement in
the fluid, we generally acquire the reflected and transmitted vitality exchange from the free-surface wave mode
to the flexural wave mode. Further, we understand that the practical changes in the flexural unbending nature on
the versatile base surface have a remarkable effect on the issue of water wave proliferation over small bottom
distortions.

1. Introduction

The issue of diffraction of waves by a floating or submerged de-
terrents is essential for their conceivable applications in the territory of
waterfront and marine building, and thus this kind of issues have been
contemplated by numerous specialists in late decades. The issue in-
cluding reflection of surface waves by little base distortions has re-
ceived an increasing amount of application as its mechanism is critical
in the improvement of shore-parallel bars or pipes. At the point when a
stream of incident dynamic water waves experiences a deterrent on the
base of a sea, the wave stream is mostly reflected by it, and is in-
completely transmitted over it. In any case, there exists a class for most
of the part normally occurring base standing impediments, for example,
sand swells, which can be thought to be little in some sense, for which
some kind of perturbation strategy can be utilized for acquiring the
first-order correction to the reflection and transmission coefficients.

Miles (1981) explored the issue of slant incident surface water
waves spread over a little base twisting on an impermeable seabed. A
simplified perturbation technique followed by the finite cosine trans-
form strategy are utilized as a part of the scientific examination of the
issue to get the reflection and transmission coefficients up to the first
order. Utilizing Fourier transform strategy, Davies (1982) settled the

reflection of typical incident surface waves by a fix of sinusoidal dis-
tortion on the seabed in a finite locale. Utilizing the linearized wave
hypothesis, Staziker et al. (1996) considered the issue of ordinary water
wave dissipating by a bed elevation of any shape on a generally even
bed surface. The conduct of water waves over an impermeable occa-
sional bed with free-surface was understood by Porter and Porter
(2003) in a two-dimensional context utilizing linear water wave hy-
pothesis. They presented an exchange matrix technique which dimin-
ished the calculation to that required for a solitary period without
bargaining the whole linear wave hypothesis. Chakrabarti and
Mohapatra (2013) considered the reflection and transmission of surface
water waves by semi-infinite floating flexible plates on a sea by utilizing
eigenfunction extension method. At the point when a seabed is made
out of permeable material, hydrodynamic attributes are modified by the
wave-instigated pore weight and soil relocations inside the dirt skeleton
on the seabed. Utilizing Galerkin eigenfunction extension method, Zhu
(2001) contemplated the issue of water waves engendering inside
permeable media on an undulating bed. Silva et al. (2002) considered
the issue of reflection as well as transmission of waves in an ocean,
where a permeable medium was expected to lie on the bed of fluctu-
ating calm profundity. Jeng (2001) created wave scattering connection
in a permeable seabed by utilizing the complex wavenumber in the
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poro-versatile model of waves with seabed communication. Tsai et al.
(2006) researched the wave transmission over a submerged penetrable
barrier on a permeable inclining seabed. Mohapatra (2015) explored
the issue of wave diffraction by little distortion on a permeable bed in a
sea by utilizing the Green's integral hypothesis with the presentation of
suitable Green's function.

Every issue depicted above is centered just around the wave
movement in a sea with a free-surface, though the base is thought to be
either an inflexible or permeable bed with little deformation. In any
case, the flexibility of the seabed of variable profundity is additionally
one of the imperative parts of the examination, which has not been
represented in these past examinations. Yet, a couple of quantities of
scientists have contemplated the wave-structure communication issues
within sight of a flexible seabed. Saha and Bora (2015) examined the
trapped modes upheld by a level submerged barrel set in either of the
layers of a two-layer fluid flowing over a flexible base at a finite pro-
fundity. Recently, Mohapatra (2017) considered a hydro-elastic frame
to inspect the diffracted waves by a moving sphere in a solitary layer
fluid flowing over an infinitely extended versatile base surface in a sea
of finite profundity. There is a remarkable enthusiasm for late cir-
cumstances to research the wave engendering issues in a sea with free-
surface, while the lower surface of the fluid is enveloped by a thin sheet
of the flexible horizontal base surface, displayed as a versatile plate. No
examination of the issue of water wave diffraction by an uneven
structure for such kind of seabed has occurred till date. This has in-
spired us to consider the issue of proliferation of water waves over little
distortion on the flexible base surface rather than an inflexible or
permeable base surface of an along the side unbounded sea. Because of
the appearance of the versatile base surface at the seabed, the linearized
base limit condition turns into a fifth-order one, not at all like a
straightforward homogenous Neumann condition satisfied on account
of an unbending bed. In the present paper, the effect of the versatile
plate parameter on the proliferation of water waves over base distortion
is analyzed by using the Green's function technique. It may be noted
that the present paper is different than the earlier works studied by
Chakrabarti and Mohapatra (2013) and Mohapatra (2015). While in
Chakrabarti and Mohapatra (2013), they discussed the scattering of
water waves by floating ice-plates on a sea, having an impermeable bed
surface by utilizing eigenfunction extension technique and in
Mohapatra (2015), he studied the reflection and transmission of water
waves by a small bottom distortion on a permeable seabed by applying
Green's function method. However, in the present work, we consider a
hydroelastic model to study the water wave diffraction problem in-
volving small bottom distortion on a versatile base surface in a sea,
especially when the seabed is always changing its shape such as in the
earthquake regions.

2. Formulation of the problem

Let us consider an inviscid fluid which is incompressible and com-
paratively small amplitude under the action of gravity flowing over a
versatile base surface of the seabed. The versatile base surface is as-
sumed as a narrow plate which obeys the Euler-Bernoulli beam con-
dition. Further, the width of the versatile base surface is small in
comparison with the wavelength of the incoming waves. Here, the
motion of fluid is assumed to be irrotational and time-harmonic with
angular frequency ω. The sketch of the problem in Cartesian co-
ordinates is illustrated in Fig. 1. We consider a two-dimensional Car-
tesian coordinate system x y( , ), where the x-axis chosen horizontal and
the y-axis is taken vertically downwards. The fluid is of infinite hor-
izontal extent in x-direction while the depth is along the y-direction. Let
the line =y 0 represents the mean position of the undisturbed free-
surface of the fluid and the line =y d represents the position of the
versatile base surface. Assume that a train of regular incident waves
proliferates along the positive x-direction of the fluid. Further, we as-
sume that the seabed has a small bottom deformation in the form

= +y d ξf x( ), where ≪ξ ( 1) is a non-dimensional number which re-
presents a measure of the smallness of bottom deformation and the
function f x( ) represents the shape of the bottom deformation, which is
differentiable and converges to zero as x tends to infinity. When a train
of incident waves travelling from a large distance proliferates over a
bottom deformation on the seabed, then the train of incident waves is
partly reflected by the bottom deformation (say, reflected waves), and
partly transmitted over it (say, transmitted waves). Here, the main
concern is to evaluate the reflection and transmission coefficients as-
sociated with the reflected and transmitted wave fields, respectively.

Assuming the linearized wave theory, the motion of the fluid par-
ticle in the region, − ∞ < < ∞ ≤ ≤ +x y d ξf x, 0 ( ) is depicted by a
potential function which is expressed as −φ x y{ ( , )e }ωtiR , where φ is
called as the spatial potential function. In such situation, the governing
equation for the physical problem involving the function φ is:
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The linearized free-surface boundary condition at =y 0 is
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and the linearized versatile base surface boundary condition at =y d is
given by
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where =K ω g/2 , g is the acceleration due to gravity, D represents the
flexural rigidity of the versatile base surface on the seabed which is
expressed as = ′ −Eh ρg P/12 (1 )3D ; E and P are the Young's modulus
and the Poisson's ratio, respectively, for the versatile base surface; ρ
denotes the density of the fluid; ′h represents the width of the versatile
base surface, = ′ε ρ ρ h( / ) e; ′ρ represents the density of the versatile base
and ∂ ∂n/ denotes the derivative in a direction normal to the bottom
surface of the seabed. The time-dependence term of −e ωti has been cut
off throughout the analysis.

Assuming, a non-dimensional number ξ to be small enough to ne-
glect the third and higher-order terms, then the linearized condition on
the versatile base surface which is given in equation (2.3) can be
written in a suitable form as
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Fig. 1. Domain definition sketch.
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