
Contents lists available at ScienceDirect

Ocean Engineering

journal homepage: www.elsevier.com/locate/oceaneng

Finite-order hydrodynamic model determination for wave energy
applications using moment-matching

Nicolás Faedo∗, Yerai Peña-Sanchez, John V. Ringwood
Centre for Ocean Energy Research, Maynooth University, Maynooth, Co. Kildare, Ireland

A R T I C L E I N F O

Keywords:
Radiation forces
Parametric form
Model order reduction
Moment-matching
Frequency-domain identification

A B S T R A C T

The motion of a Wave Energy Converter (WEC) can be described in terms of an integro-differential equation,
which involves a convolution product. The convolution term, which accounts for the radiation forces, represents
a computational and representational drawback both for simulation, and analysis/design of control strategies.
Several studies attempt to find a suitable finite parametric form that approximates the radiation impulse re-
sponse, to express the equation of motion in the time-domain by a state-space representation. Ideally, this ap-
proximated parametric model should behave as closely as possible to the system under analysis, particularly at
key frequencies, such as the resonant frequency of the device. This study presents a method to obtain a para-
metric model of both the force-to-motion dynamics and/or the radiation force convolution term, based on
moment-matching. Recent advances in moment-matching, allow the computation of a model that exactly
matches the frequency response of the original system at the chosen frequencies, while enforcing specific
physical properties of the device, depicting a robust and efficient method to compute a state-space re-
presentation for the dynamics of a WEC. The potential of the algorithm is illustrated by numerical examples, and
the approximation error is shown to be monotonically decreasing with increasing model order.

1. Introduction

Boundary Element Methods (BEM) are commonly used to calculate
the hydrodynamic parameters of wave energy converters and, more
generally, of various marine structures. While limited by the linear
nature of potential flow theory, the speed with which numerical si-
mulation may be performed when compared to other simulation
methods, such as computational fluid dynamics or smoothed particle
hydrodynamics, makes BEM a common choice to compute hydro-
dynamic parameters for a given WEC (Penalba et al., 2017a). Within
the wave energy community, the most-widely used BEMs include the
commercially available WAMIT (Newman and Lee, 2002) and the open-
source NEMOH (Babarit and Delhommeau, 2015) numerical codes.
However, one of the major drawbacks of BEMs is that the results are
computed in frequency-domain and, hence, can only charaterise the
steady-state motion of the WEC under analysis.

A more comprehensive dynamic modelling approach can be con-
sidered, using a time-domain representation of the motion of a WEC, in
terms of the well-known Cummins' equation (Cummins, 1962). More-
over, a direct relationship between Cummins' equation and the hydro-
dynamic frequency-domain data (typically produced by WAMIT/
NEMOH), is given in (Ogilvie, 1964) (see Section 3 for further details).

The resulting time-domain dynamical model is an integro-differential
equation, which contains a convolution term accounting for the fluid
memory effects associated with radiation forces acting on a body.

Such a convolution operation usually represents a drawback, for
two major reasons. Firstly, the direct computation of the convolution in
a time-domain simulation scheme is computationally demanding.
Secondly, such a term is inconvenient for the analysis and design of
control systems, since modern (linear) control strategies are usually
based on the availability of a state-space representation. Indeed, the
vast majority of the optimal control techniques considered in the lit-
erature, which attempt to maximise the energy absorption of WECs,
require a state-space approximation of the convolution term (Faedo
et al.), with some notable exceptions, such as (Bacelli and Ringwood,
2015) and (Faedo et al.). This leads to the requirement for a suitable
parametric approximation to the convolution term.

Several methods have been proposed in the literature to approx-
imate the radiation convolution term, in terms of a linear time-invariant
state-space representation. Noteworthy studies that provide a review on
these multiple approximation methods, include (Taghipour et al.,
2008), (Unneland, 2007) and (Roessling and Ringwood, 2015). These
methodologies can be divided into two broad categories: time-domain
and frequency-domain methods. A brief discussion on both approaches
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is given in the following.
Time-domain methods use impulse response data, which is usually

generated (via the inverse Fourier transform) from the frequency-do-
main data computed by BEMs, mainly due to the computational effort
required to compute the time-domain response directly. Studies that
consider a time-domain formulation to obtain a state-space re-
presentation of the radiation convolution term include, for example,
(Yu and Falnes, 1995), (Hatecke, 2015) and (Kristiansen et al., 2005). It
is important to note that, in some studies (such as (Kristiansen et al.,
2005)), an initial higher-order approximation is determined, followed
by a model order reduction stage. In the particular case of (Kristiansen
et al., 2005), model order reduction via balanced truncation (Antoulas,
2005) is considered for the second stage. An extensive discussion on
this two-phase approximation procedure can be found in (Unneland,
2007).

Frequency-domain parameterisation methods attempt to compute a
parametric model directly from the frequency-domain data calculated
by BEMs. As discussed in (Taghipour et al., 2008), these methods can be
divided into several categories. Some studies, such as (Sutulo and
Soares, 2005) and (Xia et al., 1998), compute a parametric form for
each hydrodynamic parameter (i.e. added mass and radiation damping)
separately, and then reconstruct the corresponding radiation impulse
response function. An alternative, and the most-widely used, formula-
tion finds a state-space form for the radiation dynamics directly, based
on its frequency response, which can be readily computed using the
hydrodynamic characteristics of the device (see, for example, (Pérez
and Fossen, 2008), (Jordán and Beltrán-Aguedo, 2004), (Holappa and
Falzarano, 1998), (McCabe et al., 2005) and (Ø. et al., 2014)). A further
alternative approach considered, for example, in (Perez and Lande,
2006), is to compute a state-space representation of the complete force-
to-motion dynamics, instead of finding only a parameterisation of the
radiation convolution term. In this case, the physical notion of each
component of the state vector is somewhat lost, though the outputs still
represent physical variables. Note that, with this overall formulation,
the order of the state-space representation obtained is usually lower (for
equal fidelity of the overall model) than first computing a parametric
form for the convolution term separately, and then embedding it into
Cummins' equation. In fact, this last approach always requires two
additional elements in the state-space representation to describe the
force-to-motion dynamics (i.e. position and velocity of the device). This
difference between both methodologies can be of particular im-
portance, for example, in model-based optimal control design for WECs,
where an excessive number of model states can render an energy-
maximising optimal controller unsuitable for real-time applications (the
reader is referred to (Faedo et al.) for further details).

Regardless of the strategy chosen, a suitable parametric form, for
wave energy applications, should represent either the force-to-motion
dynamics or the radiation force convolution term (to incorporate into
Cummins' equation), such that the behaviour of the approximated
model is as close as possible to the target dynamics in a given (input)
frequency range of interest. Furthermore, there are key frequencies,
such as the resonant frequency of the device under analysis, that have a
strong impact on the system dynamics. Ideally, the response of the
approximated model should “match” the device dynamics at these
specific key frequencies while, at the same time, approximating the
behaviour of the target device over a frequency range of interest. Such a
range is usually selected accordingly to the spectrum of the excitation
force, as discussed in Section 4.1. Another important feature of a sui-
table identification technique is that the approximation error should
decrease monotonically with increasing model order. This ensures that
a higher number of elements to represent the state of the approximated
model always decreases the approximation error. This is not always the
case, as already reported in (Bertram et al., 2001), (Pérez and Fossen,
2008) and (Perez and Fossen, 2009) and can make the choice of ap-
proximating order somewhat haphazard. In particular (Pérez and
Fossen, 2008; Perez and Fossen, 2009), report that the frequency-

domain approximation algorithm studied suffers from stability issues
when considering high-order approximations, although they declare
that the approximation error will decrease significantly before ex-
pecting any increase in such an error value.

In light of the ideal characteristics described above, this paper
proposes an approximation technique based on recent advances on
model order reduction by moment-matching, developed over several
studies, such as (Astolfi, 2010; Scarciotti and Astolfi, 2016a, 2017a,
2017b). As thoroughly discussed in Section 2, moment-matching
methods are based on the idea of interpolating a certain number of
points on the complex plane called moments. Moments have a direct
relationship with the frequency-response of the dynamical system. In
fact, a model reduced via moment-matching is such that its transfer
function matches the behaviour of the transfer function of the target
system at specific interpolation points (i.e. the moments). This is indeed
one of the ideal features required in wave energy applications: a model,
reduced by moment-matching, can be designed to match exactly the
frequency response of the device under analysis, at specific key fre-
quencies. Such an approach has several advantages compared to an
identification plus reduction technique (as considered, for example, in
(Kristiansen et al., 2005)): there is no need to perform a higher order
identification of the system, since the reduced order model matches the
moments of the unknown system, it is not just the result of a low-order
identification but it actually retain some key properties of the system
under analysis (Scarciotti and Astolfi, 2017b). Furthermore, given this
intuitive property of the moment-matching approach, essential physical
properties of the device can be enforced on the reduced order model,
such as input-output stability. Note that stability is not usually guar-
anteed by current radiation force impulse response identification al-
gorithms, so that several “fixes” have been proposed (further discussed
in Section 5).

We note that the process of determining a finite-order dynamical
model from ‘frequency response’ data points can alternatively be
termed system identification (determining a model from frequency re-
sponse data), or model-order reduction, where the starting model order
is effectively the number of frequency points available. In the paper, we
use the term ‘model order reduction’, in order to be more consistent
with previous literature on moment-matching.

The remainder of the paper is organised as follows. In Section 2, the
definition of moment, and the theoretical framework behind model
order reduction by moment-matching, is introduced. Section 3 recalls
the equation of motion of a floating body, in both frequency and time
domain formulations. In Section 4, moment-based model order reduc-
tion is applied to the WEC case, to obtain a suitable parametric form for
both the complete force-to-motion dynamics, and just the convolution
term of Cummins' equation. Section 5 presents numerical examples of
the proposed technique, using frequency-domain data for particular
WEC devices. Finally, a discussion and concluding remarks are pre-
sented in Section 6.

1.1. Notation and preliminaries

Standard notation is considered through this study, with any ex-
ceptions detailed in this section. �+ (�−) denotes the set of non-nega-
tive (non-positive) real numbers. �0 denotes the set of pure-imaginary
complex numbers and �− denotes the set of complex numbers with a
negative real part. The symbol 0 stands for any zero element, dimen-
sioned according to the context. The symbol �n denotes an order n
identity matrix. The spectrum of a matrix �∈ ×A n n, i.e. the set of its
eigenvalues, is denoted as σ A( ). The symbol ⊕ denotes the direct sum
of n matrices, i.e. ⊕ = …= A A A Adiag( , , , )i

n
i n1 1 2 . The notation z{ }R and

z{ }I , with �∈z , stands for the real-part and the imaginary-part opera-
tors, respectively. The expression x 2, with �∈ ×x n 1, denotes the
ℓ2-norm of the complex-valued vector x. The Kronecker product between
two matrices �∈ ×M n m

1 and �∈ ×M p q
2 is denoted as ⊗M M1 2

�∈ ×np mq, while the convolution between two functions f t( ) and g t( )
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