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A B S T R A C T

Offshore platforms are anchored to the ocean floor using moorings to prevent excessive drifting, and these
moorings need to be monitored for damage, an expensive process. Is it possible to detect a change in moorings
stiffness by measuring the motion of the platform under random wave forcing? The platform's response is
strongly dependent on the wave spectrum and direction of forcing, this forcing is random, and the measurements
are indirect, so it seems unlikely. To examine the feasibility we examine a much simpler but analogous spring-
plate-table system with table rotation mimicking wave action. We find that by using a modal analysis of the
underlying system one can unscramble the plate's response and thus determine spring stiffness changes under
random forcing, however, as one would expect, the forcing has to have components in an ‘active’ frequency and
direction range. In principle the same type of analysis can be used for real moorings.

Whilst the spring-plate-table system model was developed with moorings in mind, such fault detection issues
often arise under circumstances in which direct fault detection is impossible but the basic underlying system is
‘known’. The simple spring-plate system examined here is perhaps the simplest non-trivial example of this si-
tuation.

1. Introduction

Offshore oil platforms (and also risers) need to remain connected to
the well head and so are moored to the ocean bottom to prevent ex-
cessive drift under the action of oncoming waves and currents, see
Fig. 1. The moorings provide a structural support for the platform
which will be compromised if any of the moorings break or are wea-
kened. Although designed to survive extreme wave events, recent data
suggests that they regularly fail early in their lifetime through a number
of mechanisms (Morandini et al., 2009). Fault detection is therefore of
critical importance. Monitoring strategies attempt to catch the early
signs of failure, with current industry practice being to deploy un-
manned vehicles or divers to undertake visual inspection every five
years, alongside shallow water inspections on a yearly basis (Morandini
et al., 2009) (Renard et al., 2006). We propose methods for (con-
tinuously) detecting faults by observing the changed movement of the
platform under random wave forcing. Primarily taut leg platforms will
be the focus but the procedures used may be applicable to other
moorings types and other forms of external forcing.

Vibrations in the form of sound waves or light rays have been used
in the mining industry for the detection of ore bodies, in engineering to
determine the presence of cracks in metal and bubbles and other flaws
in plate glass, and in medicine to determine abnormalities in human

anatomy, see (Sen and Stoffa, 2013), (Duan et al., 2016), (Deng and Liu,
2011). In these classical inverse problem circumstances the vibrational
source is prescribed and the aim is to determine some physical property
associated with the underlying system. The moorings problem is also an
inverse problem but is different in that the vibrational forcing (waves)
is not controllable but the response of the platform/moorings system is
almost completely known. An additional difficulty is that the response
of the platform/moorings system is strongly direction and frequency
dependent, so any crude statistical approach will fail; we will make use
this sensitivity to detect the fault.

In general terms the vertical vibrational movement of the platform,
of mass M, can be described by an equation of the form

+ + =z z zM tD K F¨ ˙ ( ),

where z is the vertical displacement of locations on the platform, tF( )
represents the vibrational forcing due to waves, K is the effective
mooring stiffness and D is the damping coefficients. The aim to de-
termine the change in K by observing z when tF( ) is random with zero
mean. In the case of a taut leg platform the moorings are cables an-
chored some distance from the platform and the effective stiffness for
vertical motions is provided by the vertical component of the cable
tensions, see Fig. 1.

Aside of course it is the non-vibrational horizontal components of
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cord tension that act to restore the platform to a central location and
some information concerning mooring stiffness can be obtained by
observing this translational movement, however here we consider vi-
brational vertical movements caused by waves; the system is assumed
to be linear so such quasi-steady forcing with associated translational
motion can be filtered out. Also, although an equation of the above type
can be used to describe induced horizontal vibrations, it seems unlikely
that the forcing and platform response will be consistent enough to
enable stiffness calculations of the type described here to be successful.
There are other moorings types and the applicability of the procedures
used here will depend on the circumstances of forcing and restraint, see
Section 4.

Many issues complicate the fault detection moorings problem, see
Section 4, however the primary difficulties are that: the forcing is
random and unknown, the system's response is highly frequency and
direction dependent, and the measurements are indirect. It was/is not
clear if detection is possible ‘in principle’, so an analogous but much
simpler system has been examined. The simpler system consists of a
plate (platform) mounted by springs (cables) on a vibrating table (the
waves), see Fig. 2. In the taut leg mooring situation it is the long waves
(i.e. waves of length of the platform or larger) that cause the platform to
move against gravity causing the platform to vibrate vertically and to
pitch and roll. In our simpler system the rotating table applies this
external forcing causing the rigid plate to translate, pitch and roll. The
direction of the in-plane axis of rotation, as well as the amplitude and
frequency of oscillation, may vary randomly to simulate waves im-
pacting the platform at an arbitrary angle. The advantage of this plate
model is that exact solutions are available so that the fault detection
procedures used can be assessed. Typical inverse approaches in vibra-
tions rely on modal analysis techniques to extract information from
resonant peaks in the frequency domain, which can be used to re-
construct the mass, stiffness and damping of the system (Schmitz and
Smith, 2011). This is the approach we will take here.

In Section 2 we solve the forward problem under deterministic

forcing. We then use the results to address the inverse problem in
Section 3, and we then use simulations to determine the efficacy of the
method. Finally, in Section 4, we return to discuss the application to
real moorings.

2. Forward problem

2.1. Table and plate geometry and dynamics

The situation to be examined is that of a plate attached to a vi-
brating table by supporting springs as shown in Fig. 2. The vibrating
table causes the plate to vibrate. The centre of the table is chosen as the
origin O through which passes the horizontal datum plane with axes x
and y aligned with the sides of the table and with the z axis vertical.

We will begin by considering the oscillating table and initial spring
positions in the absence of the plate, shown in Fig. 3.

The table oscillates about an axis passing through O and lying in the
plane of the table at an angle γ clockwise to the x axis. The table has
length 2L and width 2B. The equations describing the corner heights of
the table Zi above the datum plane at time t due to the table oscillation
are given by
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where ωf is the angular frequency of rotation and α0 the amplitude of
rotation of the table, and where the small angle approximation

=α αsin 0 0 has been used under the assumption that the forcing mag-
nitude is sufficiently small.

There are four springs attached to the table corners, denoted
i= 1.4. The ith spring of initial length li0 is attached to the table as
shown. As we are most interested in the effect of mooring integrity on
system behaviour, spring 3 is allowed to be weaker. Thus, the spring
constants ki are

Fig. 1. A long wave hits a moored platform causing it to pitch, roll and translate
vertically. Can the vibrations induced be used to determine changes in the
mooring stiffnesses?

Fig. 2. The plate/spring/table system. Springs attach the
corners of a plate to a table which can rotate about an axis in
the plane of the table passing through the centre of the table.
The suspended plate (platform) acts in response to a table
which vibrates about its axis. In the illustrated case the axis
of rotation (direction of incoming wave) is parallel to the
plate edges but arbitrary in-plane orientations are con-
sidered. The z Z( , )i i ’s locate the (plate, table) relative to the
horizontal datum plane through the centre of the table.

Fig. 3. Base table and uncompressed springs. γ is the axis of rotation (dotted
line).
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