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A B S T R A C T

Flow-induced vibration (FIV) of a flexible plate located in the wake of a rigid circular cylinder is investigated
numerically in this study. Computations are performed at two Reynolds numbers Re=100 and 200, with the
plate bending stiffness KB varying from 0.00563 to 0.36. The gap spacing between the cylinder and the plate
varies within the range of 2.0≤ S/D≤ 5.0 (D is the cylinder diameter). Numerical results show that the op-
timum location with the maximum vibration response is found to be the medium spacing, within which the
vortex structures are fully formed in the gap and impinge on the plate successively. The maximum peak am-
plitude of the tip appears at the smallest KB where the plate experiences the first- and second-bending motions;
accordingly, the orbit of the tip presents a clear “Figure-8” pattern, indicating that the bending deformation has
strong nonlinearity. It is also found that there are two mechanisms driving the plate to vibrate in both first- and
second-bending modes. The first mechanism is the vortex impingement with the low pressure core, while the
second is the high pressure region induced by the stagnation of flow near the turn-up part of the plate.

1. Introduction

A flexible structure immersed in a fluid flow may deform and vi-
brate owing to the fluid forces acting on its surface. This, in turn,
changes the flow field resulting in a coupling process between the fluid
and the structure. Over the past few decades, flow-induced vibration
(FIV) of a thin flexible structure has received increasing attention due to
its importance in applications, such as surgical techniques for snoring
(Huang, 1995), paper processing (Watanabe et al., 2002), fish loco-
motion (Lauder, 2015) and ocean energy harvesting (Jbaily and Jeung,
2015). Although these applications are widespread, the FIV phenom-
enon still puzzles people due to its complicated coupling dynamics.

As a multi-physics issue, FIV of a thin flexible structure involves the
interactions of an elastic body with surrounding fluid flow. The struc-
tural deformation and vibration are physically determined by not only
the fluid condition but also the material and geometric properties. To
obtain the physical insights on the underlying mechanisms, the present
model of fluid-structure interaction (FSI) is usually treated as a canti-
levered flexible plate placed in an undisturbed uniform flow for scien-
tific research. During the past decades, numerous studies have been
performed to deal with this issue (Kornecki et al., 1976; Huang, 1995;
Guo and Paїdoussis, 2000; Balint and Lucey, 2005; Eloy et al., 2007;
Tang and Paїdoussis, 2007). The common results predict that the
flexible plate suddenly loses stability and attains an intensified flapping

motion beyond a critical flow speed; this change is usually attributed to
a broken compromise between the unsteady pressure forces of the fluid
and the bending stiffness of the plate. Moreover, Tang and Paїdoussis
(2009) studied the coupled dynamics of two cantilevered flexible plates
aligned parallel to each other in open axial flow. They found that the
flapping threshold is a function of the separation between the two
plates. The two-plate system can oscillate in both in-phase and out-of-
phase modes. A further work by Gurugubelli et al. (2014) noticed that
there exists an optimum spacing between the plates for which the
flexible plates experience greater resonance amplitude.

Additionally, motivated by the FIV energy harvesting mechanism of
the piezoelectric material, quite a few investigations have been con-
ducted on a flexible plate behind a bluff body. Taylor et al. (2001)
experimentally demonstrated continuous extraction of electrical energy
from a plate made of piezoelectric membrane behind a bluff body, in
which an alternative variation of the Kármán vortex street excites
periodic flapping of the membrane. Subsequently, Allen and Smits
(2001) claimed that the optimal coupling between an energy-harvesting
process and the wake flow is best defined as a resonance condition in
which the membrane has a negligible damping effect on the original
Kármán vortex street. Lee and You (2013) numerically analyzed the
vortex-shedding-induced vibration of a splitter plate fixed to the lee
side of a fixed circular cylinder. The results documented that the de-
flection shape of a splitter plate is dependent on the length of the plate,
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while the deflection magnitude is a function of the bending stiffness and
natural frequency of the corresponding plate. Nayer et al. (2014) per-
formed a complementary experimental-numerical investigation on flow
past a cylinder with a trailing flexible plate. They claimed that the ratio
of structural density to fluid density has the least effect on the plate
response compared with Young's modulus and material thickness.
Furquan and Mittal (2015) conducted a preliminary study of flow past
two square cylinders with deformable splitter plates. It was found that
the two coupled plates initially undergo small amplitude out-of-phase
oscillations, but later they settle into in-phase vibrations; when the
dominant vibration frequency is close to the structural natural fre-
quency, lock-in occurs for certain values of flexibility. A recent study by
Purohit et al. (2018) focused on the influence of flow velocity and
flexural rigidity on FIV of a flexible plate attached to a square bluff
body. The results present a nonlinear relation between vibration level
and flow velocity as well as structural flexibility. For a particular
combination of flow velocity and plate stiffness, the coupled fluid-
structure system shows resonance condition. All the configurations
mentioned above are closely associated with an extraneously induced
excitation, which is characterized by the unsteady pressure force due to
the vortex shedding from the upstream bluff body (Allen and Smits,
2001; Lee and You, 2013). However, little research has been performed
on the influence of the bluff body on the vortex shedding near the
critical gap spacing, beyond which the plate response may differ sig-
nificantly.

In this study, flow past a rigid circular cylinder with an unattached
flexible plate is investigated numerically. The plate is located in the
cylinder wake, and the gap spacing is defined as the distance between
the trailing point of the cylinder and the leading point of the plate. A
series of numerical calculations are performed by using a strongly
coupled finite element model. This study aims at exploring the effects of
both gap spacing and bending stiffness on the modification of vortex
shedding and the FIV behavior of the plate. Particular attention is paid
to the vibration amplitude, the frequency characteristics, and the dy-
namic mechanisms behind the vortex-plate interactions.

The remainder of this paper is organized as follows. Section 2 de-
scribes the details of the computational methodology. It is followed by
the numerical validation in Section 3 and the problem definition in
Section 4. Section 5 presents the numerical results of FIV of the flexible
plate behind the cylinder. Finally, concluding remarks are drawn in
Section 6.

2. Numerical methods

2.1. Computational fluid dynamics (CFD)

The governing equations for the incompressible fluid flow are the
Navier-Stokes (NS) equations and the continuity equation. In this study,
the Arbitrary Lagrangian-Eulerian (ALE) scheme (Donea et al., 1982) is
adopted to deal with the moving boundaries. The NS equations and the
continuity equation in ALE form can be written as:
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In the above equations, ρf is the density of the fluid, uf is the fluid
velocity, t is the time, and um is the mesh velocity computed by solving
a modified Laplace equation (Wang et al., 2014) in this study. The fluid
stress tensor σf is defined as:
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where p is the pressure, I is the identity tensor, and νf is the kinematic
viscosity of the fluid.

The temporal discretization of the NS equation is performed by the
semi-implicit four-step fractional method. The streamline upwind/

Petrov-Galerkin (SUPG) finite element scheme is applied to the spatial
discretization. More details about the solution of the NS equation can be
found in Wang et al. (2014).

2.2. Computational structural dynamics (CSD)

Deformation of the flexible structure is governed by the equation of
momentum conservation, which reads as follows:

= ∇⋅ +ρ ρu σ f¨s s s s (4)

where ρs is the structural density, us is the displacement, σs is the
Cauchy stress tensor, and f denotes the body force. By assuming a Saint
Venant-Kirchhoff material, the constitutive equation can be written
using the 2nd Piola-Kirchhoff stress tensor S and the Green-Lagrange
strain tensor E:
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where νs is the Poisson ratio and E is the Young's modulus. S is related to
σs through geometric transformation:

= − −JS F σ Fs
1 T (6)

where F is the deformation gradient tensor, and J is the determinant of
F.

By the principle of virtual work, Eq. (4) can be recast in a weak
variational form:
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where δus and δE are the virtual displacement and strain, respectively,
and tf denotes the fluid traction on the fluid-structure interface Γ. The
finite element discretization of Eq. (7) is performed by introducing a
vector of nodal displacements d, which satisfies =u Nds

e e, where N is
the displacement interpolation matrix in an element e. Eq. (7) in the
matrix-vector form is then obtained as follows:
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In the above equations, M is the mass matrix, KT is the tangent
stiffness matrix, Q characterizes the vector of fluid load acting on the
structure (pressure and shear stress), F is the vector of internal nodal
force, BL and BNL are the linear and nonlinear strain-displacement
transformation matrices, respectively, D is the elasticity matrix, and Ŝ is
the 2nd Piola-Kirchhoff stress vector. Applying the Newmark-β method
(Newmark, 1959) for time integration and the modified Newton-
Raphson method (Bathe et al., 1975) for geometrically nonlinear ana-
lysis, Eq. (8) is solved as:
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In the above algorithm, k is the iteration counter, Δd is the vector of
displacement increment in per iteration step, and α is the implicitly
controlled weighting value which is set to 0.25. The parameter β is not
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