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a b s t r a c t

The estimation of system failure probabilities in presence of uncertainties may be a difficult task when
the values involved are very small, so that sampling-based Monte Carlo methods may become compu-
tationally impractical, especially if the computer codes used to model the system response require large
computational efforts, both in terms of time and memory. In this work, we propose to exploit the
Bayesian Monte Carlo (BMC) approach to the estimation of definite integrals for developing a new,
efficient algorithm for estimating small failure probabilities. The Bayesian framework allows an effective
use of all the information available, i.e. the computer code evaluations and the input uncertainty dis-
tributions, and, at the same time, the analytical formulation of the Bayesian estimator guarantees the
construction of a computationally lean algorithm. The proposed method is first satisfactorily tested with
reference to an analytic, two-dimensional case study of literature, offering satisfactory results; then, it is
applied to a realistic case study of a natural convection-based cooling system of a gas-cooled fast reactor,
operating under a post-loss-of-coolant accident (LOCA), showing performances comparable to those of
other efficient alternative methods of literature.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Reliability and risk analyses are fundamental tasks for the
economical sustainability and the safety of many complex engi-
neering applications [1]. In the last decades, they have developed
into scientific disciplines, as an answer to the increasing needs of
mass production and potentially highly hazardous systems, e.g.
complex structures, nuclear power plants, chemical plants, radio-
active waste repositories, etc.

In all generality, the problems of risk and reliability arise
whenever it is possible to identify a potential source of damage or
loss, i.e. hazardous events threatening some targets of interest. In
this context, a central role is played by uncertainty. In general,
uncertainties in the operation of an engineering system are due to
some lack of knowledge, e.g. not fully understood physical phe-
nomena underlying its functioning, measurement errors or scarce
operating experience to characterize it, errors and approximation
in the mathematical models and the computer codes used to
represent its behaviors, etc. Unfortunately, these uncertainties
may give rise to functional failures, i.e. deviations from their
modeled, expected behavior which lead the “loads” imposed to the

systems to overcome their “capacities”. The estimation of the
probabilities of these failures is a fundamental task, which, in
general, requires the propagation of the uncertainties, described
by properly identified probability density functions (pdfs), to the
model outputs with respect to which some system performance
indicator is defined [2–5]. The propagation is typically done by
classical, crude Monte Carlo (MC) schemes, which are based on the
repeated runs (or simulations) of the computer codes representing
the system behavior in correspondence of different sets of the
uncertain input values sampled from their joint pdf [1]. In details,
given a probabilistic model of the input/output mapping of the
system under analysis, described by a n-dimensional random
vector x¼ x1; :::; xnð Þ with probability density function f xð Þ, and a
performance function H xð Þ representing some system response of
interest, the failure event and its indicator function are defined as

F ¼ x : H xð Þr0
� � ð1Þ

1F xð Þ ¼ 1 Hr0f g xð Þ ð2Þ

where the set F is called failure region. The failure probability can,
then, be written as

pf ¼ P x : H xð Þr0
� �� �¼ Ef 1F xð Þ½ � ¼

Z
Rn
1F xð Þf xð Þdx ð3Þ
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where the set of points xARn such that H xð Þ ¼ 0 is the limit state
function [6].

The classical MC scheme [1] to the estimation of the failure
probability then amounts to i) sampling Ncalls values of the input
parameters x from f xð Þ and ii) running the model in correspon-
dence of each of the Ncalls realizations of x in order to compute the
performance function H xð Þ; the failure probability can, then, be
estimated by dividing the number of realizations for which H xð Þ
r0 by Ncalls.

However, the engineering systems involving potentially large
economical and/or safety issues are designed so that their failures
are rare events. Thus, the estimation of the failure probabilities can
require a large number of runs of the computer codes encoding the
systems behaviors. This problem is worsened by the fact that the
complexity of the systems involved and the levels of detail and
accuracy typically required by the analyses are such that the
computer codes become computationally very intensive, as, for
example, the finite elements codes required in structural reliability
analyses [11,7].

Various efficient methods have been proposed in literature to
address this problem: the interested reader may refer to [9,10] for
thorough reviews and comparisons of many existing method.
However, efforts are still made by the scientific community aimed
at improving existing methods or developing new ones, mainly
because their performances depends in general on the models
and/or computer codes adopted to carry on the reliability analysis,
and there not exists an approach with outstanding performances
in any application. Here, we will briefly recall the general ideas
behind the most recent methods. The first family of methods
commonly used in structural reliability analysis and known as
FORM or SORM (first or second order reliability methods), stems
from an approximation of the limit state function around the so
called “most probable failure point (MPFP)” or “design point”,
based on a Taylor series expansion [6]. The fast estimates of the
failure probabilities, requiring a very limited number of perfor-
mance function evaluations by the original model comes at the
expense of a few important limitations: i) the methods do not
allow any quantification of the approximation errors; ii) in case of
complicated, highly non-linear limit state functions, the linear
approximation provided by the FORM introduces large estimation
errors, only partially reduced if the SORM is used; iii) in presence
of multiple, non-connected failure domains the methods may lead
to biased estimates of the failure probability; iv) when dealing
with high dimensional input spaces, the finite difference scheme
may severely affect the efficiency of these methods.

The second family of methods, also known as simulation
methods, comprises those based on MC schemes. In this context,
many so called variance reduction techniques have been proposed
in literature, which aim at developing more efficient MC estima-
tors achieving the same levels of accuracy at largely reduced
numbers of model simulations, i.e. evaluations of the performance
function. Perhaps, the most popular variance reduction technique
is Importance Sampling (IS), which has been successfully applied
in many fields of research. However, it is not easy in general to
choose a suitable importance density from which the samples
should be drawn; a common approach in structural reliability is
that of choosing the importance density as a joint Gaussian dis-
tribution centered around the MPFP identified by a FORM (or
SORM) in the isoprobabilistically transformed standard input
space [11,12]: by doing so, it is possible to refine the result of the
FORM (SORM) by an IS procedure which picks the samples in the
vicinity of the failure region. Another important variance reduc-
tion technique is subset sampling, which estimates the failure

probability as the product of conditional probabilities, each of
them being estimated by Markov Chain Monte Carlo simulation
[13]. The benchmark study provided in [10] showed that the
subset sampling (or modifications thereof) method is very effec-
tive in higher dimensions. In general, sampling-based methods
stemming from a variance reduction technique allows significant
improvements with respect to a crude MC simulation; however,
they suffer from the fact that the number of time-demanding
evaluations of the original performance function required for
estimating small probabilities remains too large [7].

The third family of methods for efficiently addressing this
problem relies on the substitution of the original performance
function by a surrogate model (or metamodel) within a sampling-
based scheme; a metamodel is, in general, orders of magnitude
faster to be evaluated, thus allowing significant computational
savings. Several metamodels have been proposed in literature,
such as quadratic response surfaces, polynomial chaos expansions,
support vector machines, neural networks and kriging. The major
drawback of the direct substitution of the original performance
function with a surrogate model is that it is often impossible to
keep the approximation error under control [7].

Recently, adaptive strategies for coupling sampling-based
method and metamodeling have been proposed, which allow
refining the metamodel construction until a predefined level of
accuracy is achieved. For example, [7] proposed to resort to a
kriging-based surrogate model to approximate the optimal
importance density; following a different philosophy, [14,11]
proposed to use kriging to reconstruct the limit state function,
whereby the metamodel training set was, then, iteratively enri-
ched on the basis of a learning function accounting for the prob-
ability of the metamodel correct classification (AK-MCS and its
improved version, AK-IS). The meta-IS [7] turns out to be more
suitable than the AK-IS algorithm [11] when the failure region is
made up of disconnected sub-regions, each one providing non
negligible contributions to the total failure probability: in this case,
in fact the AK-IS provides biased estimates, since it relies on a
FORM estimate of the MPFP. In a work by some of the same
authors [15], the AK-IS has been successfully extended to be able
to deal with multiple disconnected failure regions. A drawback of
both IS-based and metamodel-based approaches (as the AK-IS) is
that they suffer when applied to highly multidimensional input
spaces, as acknowledged in [16,17].

In this work, we propose to exploit the Bayesian Monte Carlo
(BMC) approach to the estimation of definite integrals [18] for
developing a new, efficient algorithm for estimating small failure
probabilities. The motivation of the proposed strategy lies in the
fact that the BMC method has been shown in [18] to be capable of
offering better performances than crude MC and even of impor-
tance sampling (IS)-based variance reduction techniques, both in
terms of accuracy and required number of model evaluations, by a
more efficient use of the available information, i.e. the input pdfs
and the computer code runs. Moreover, the BMC method features
(i) a closed-form analytic expression, which may become a key
advantage when the computational times required by the esti-
mation algorithms (not the model evaluations) start affecting the
overall failure probability estimation, and (ii) the possibility of a
priori selecting the evaluation input points, which is useful, for
example, when exploiting an existing set of model evaluations,
obtained in the past for different purposes [18]. These considera-
tions suggest the possibility of exploiting the BMC approach for
estimating the special definite integrals which define the failure
probabilities (see Eq. (3)).
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