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A B S T R A C T

Accurate and computationally efficient mathematical models are fundamental for designing, optimizing, and
controlling wave energy converters. Many wave energy devices exhibit significant nonlinear behaviour over
their full operational envelope, so nonlinear models may become indispensable.

Froude-Krylov nonlinearities are of great importance in point absorbers but, in general, their calculation
requires an often unacceptable increase in model complexity/computational time. However, for axisymmetric
bodies, it is possible to describe the whole geometry analytically, thereby allowing faster calculation of nonlinear
Froude-Krylov forces.

In this paper, a convenient parametrization of axisymmetric body geometries is proposed, applicable to de-
vices moving in surge, heave, and pitch. While, in general, Froude-Krylov integrals must be solved numerically,
by assuming small pitch angles, it is possible to simplify the problem, and achieve a considerably faster algebraic
solution. However, both nonlinear models compute in real-time.

The framework presented in the paper offers flexibility in terms of computational and fidelity levels, while
still representing important nonlinear phenomena such as parametric pitch instability. Models with lower
computational requirements may be more suitable for repetitive calculations, such as real-time control, or long-
term power production assessment, while higher fidelity models may be more appropriate for maximum load
estimation, or short-term power production capability assessment.

1. Introduction

Mathematical models are indispensable for designing, optimizing,
and controlling wave energy converters (WECs). Ideally, such models
are required to be both accurate and computationally efficient. The
most popular models are linear, which are convenient for their short
computation time, but accurate only for small relative fluid/body mo-
tions. Conversely, wave energy converters are likely to experience large
movements, especially under controlled conditions, in order to max-
imize the power absorption. Consequently, significant nonlinear effects
may arise, so that linear models become less reliable (Giorgi and
Ringwood, 2017c).

The inclusion of nonlinear terms in the equation of motion generally
improves the accuracy of the model, but with additional complexity and
computational burden. In particular, it has been shown, in the litera-
ture, that nonlinear Froude-Krylov (FK) forces, which represent the
integral of the static and dynamic pressure over the wetted surface of
the device, are especially important for point absorbers (Giorgi and
Ringwood, 2017a). Furthermore, nonlinear FK forces are responsible

for purely-nonlinear phenomena, such as pitching instability or para-
metric roll (Tarrant, 2015).

For geometries of arbitrary complexity, the computation of non-
linear FK forces first requires the discretization of the surface with a
mesh, and then the employment of a time-consuming remeshing rou-
tine, at each time step, in order to calculate the instantaneous wetted
surface of the device (Matusiak, 2011; Bandyk, 2009). However, if the
body is assumed to be axisymmetric, it is possible to describe the
complete geometry analytically, thereby avoiding the use of a mesh
(Giorgi and Ringwood, 2017b). Note that such a hypothesis is not
particularly restrictive, since the vast majority, if not all, point absor-
bers are designed to be non-directional, and are therefore axisymmetric.
Due to the analytical description of the geometry, the computation of
nonlinear FK forces is considerably faster than the meshing approach.

In this paper, a convenient parametrization of axisymmetric sur-
faces is proposed, applicable to devices moving in three degrees of
freedom (DoFs), allowing an analytical description of nonlinear FK
forces in surge, heave, and pitch. In general, the FK integrals must be
solved numerically using, for example, a trapezoidal rule. Assuming
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small pitch angles, however, it is possible to further simplify the pro-
blem, and achieve an algebraic solution, which is considerably faster
than numerical integration. Hereafter, LFK is used as the acronym for
linear FK forces, VFK for the algebraic-nonlinear model (since it as-
sumes a vertical geometry), and RFK for the numerical-nonlinear model
(since it considers a rotating geometry).

The application of these three different approaches to the FK force
calculation (linear, algebraic-nonlinear, and numerical-nonlinear) may
depend on the particular purpose the mathematical model is intended
for. For preliminary studies, shape optimization, or WEC farm config-
uration analysis, many iterations are required; therefore, the require-
ment for fast calculation prevails over the accuracy requirement. In case
of control optimization routines, a higher level of accuracy is of great
importance, at a significantly low computational time; therefore, the
algebraic-nonlinear approach may be the most appropriate. Finally,
higher degree of accuracy is needed for power production assessment,
or to compute maximum loads (for the design of the mechanical
properties of the structure and mooring lines), or for verifying the
likelihood of events such as instability or parametric roll. In such cases,
the numerical-nonlinear method may be preferred.

However, the choice between the LFK, VFK, and RFK, strongly de-
pends on the operational space spanned by the device in its operating
conditions, in particular the heave displacement and the pitch angle. In
fact, for small motions, linear assumptions are reasonably valid, and all
models effectively overlap. Conversely, when the device experiences
large motions, typically induced by the control strategy, important
differences between the models may arise.

The purpose of this paper is to provide a simple and computation-
ally convenient formulation for nonlinear FK forces for axisymmetric
wave energy converters, moving in surge, heave, and pitch. A case
study is then considered, inspired by the CorPower device (CorPower,
2017), in order to quantify differences in accuracy and computation
time for linear, algebraic-nonlinear and numerical-nonlinear models.
Previous studies, in the literature, concerning nonlinear FK forces for
multi-DoF wave energy devices, use a computationally expensive mesh-
based approach (Penalba et al., 2017), while this paper introduces a
more efficient methodology, applicable to point absorbing WECs.

Although such a modelling approach for nonlinear FK forces cal-
culations was already proposed in (Giorgi and Ringwood, 2017b), only
very academic case studies were considered, such as spheres, while this
paper demonstrates the applicability of the method to a real device; this
allows a realistic quantification of the computational efforts related to a
geometry composed of different elementary geometries, as well as the
discussion of more realistic nonlinear effects. A further novelty of this
paper is the expansion of the method to multiple DoFs, as opposed to 1-
DoF as in (Giorgi and Ringwood, 2017b). In fact, two solutions are
proposed and discussed (VFK or RFK), with significantly different
computational burdens (about two orders of magnitude difference). The
choice between algebraic (VFK) or numerical (RFK) integrations is
guided by the accuracy/computational compromise, specific to the
particular application the model is intended to serve. Furthermore, the
expansion to 3-DoFs is not trivial, especially for the numerical in-
tegration solution (RFK): some practical issues are here addressed,
leading to two different approaches, one of which is almost twice as fast
as the other.

The reminder of the paper is organized as follows: Sect. 2 presents
the different methods to compute FK forces, which are validated in Sect.
3. A parametric study is proposed in Sect. 4, while the dynamical re-
sponse to incoming waves is discussed in Sect. 5. Some final remarks
and conclusions are given in 6. An appendix is included as well, in order
to explicitly provide all the algebraic results, obtained with the VFK
model.

2. Froude-Krylov forces

In the framework of linear potential theory, FK forces correspond to

the integral of the pressure of the undisturbed wave field over the
wetted surface of the device. Such a pressure is defined, according to
linear Airy's theory, as:

= + = − + + − +p x z t p p γz γa χ z h
χh

ωt χx φ( , , ) cosh( ( ))
cosh( )

cos( )st dy (1)

where = −p γzst is the static pressure, pdy the dynamic pressure, γ the
specific weight of the sea water, a the wave amplitude, χ the wave
number, ω the wave frequency, φ an arbitrary phase (usually set to
zero), h the water depth (defined according to a right-handed inertial
frame of reference x y z( , , ), with the origin at the still water level
(SWL)), x pointing in the direction of propagation of the wave, and z
pointing upwards. The free surface elevation η is defined as

= − +η x t a ωt χx φ( , ) cos( ) (2)

Froude-Krylov forces are computed by integrating the pressure,
shown in equation (1), over the instantaneous wetted surface S t( ). In
particular, static and dynamic FK force components can be defined,
respectively, as follows:
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S t
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( )
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where = n n nn ( , , )x y z is the unit vector normal to the surface, pointing
outwards, and Fg is the gravity force. Likewise, FK torques are defined
as follows:
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where r is the position vector, and × is the cross product.
For a geometry of arbitrary complexity, it is not possible to solve the

FK integrals of (3a) to (4b). Linear boundary-element solvers linearize
the problem around the still water level (SWL: = =z η 0), therefore
considering a constant wetted surface, unlikely to be valid for a WEC
under energy-maximizing control (Giorgi and Ringwood, 2017c).

Alternatively, the geometry can be discretized through a mesh,
computing the contribution to the force over each mesh panel
(Gilloteaux, 2007). Such an approach, though feasible, is computa-
tionally expensive, due to the recalculation, at each time step, of the
instantaneous wetted surface, and consequent remeshing of the geo-
metry. For axisymmetric buoys, a convenient parametrization of the
wetted surface can ease the calculation of the FK integrals. In particular,
computationally efficient algebraic solutions of the FK integrals exist
for vertical axisymmetric buoys (Giorgi and Ringwood, 2017b). Such a
method is further described in Sect. 2.1.

If the body is also pitching, numerical integration is required. Such a
method is further described in Sect. 2.2. Table 1 summarises the main
different characteristics of LFK, VFK, and RFK, highlighting different
assumptions and, qualitatively, different computational time require-
ments. Quantitative accuracy and computational time comparisons are
presented in Sects. from 3 to 5.

2.1. Nonlinear Froude-Krylov force: algebraic integration

Both the algebraic (VFK) and the numerical (RFK) integration ap-
proaches rely on the assumption of axisymmetric geometry, which al-
lows the analytical description of the whole wetted surface. The geo-
metry of a generic buoy which is symmetric around a vertical axis can
be described in cylindrical coordinates, as follows:
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