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A B S T R A C T

The discrete-module-beam-bending based hydroelasticity method proposed by Lu et al. (2016) deals with the
hydroelastic response of a flexible structure by discretising it into several rigid submodules which are connected
by Euler-Bernoulli beam elements. A stiffness matrix is determined in terms of the geometrical and physical
properties of the flexible structure for each beam element and it has an analytical form for simple geometric
features such as a rectangular cross section unchanged along the longitudinal direction. However, the analytical
stiffness matrix may not exist for a flexible structure with complex geometric features. In the present study, with
the aid of finite element method, the discrete-module-beam-bending-based hydroelasticity method proposed by
Lu et al. (2016) is extended to be applicable for a flexible structure with complex geometric features.

1. Introduction

Hydroelasticity is concerned with the deformation of flexible
structures responding to hydrodynamic excitations and simultaneously
the modification of the excitations due to the structural deformation.
Traditional three-dimensional hydroelasticity theory based on mode
superposition approach has been widely adopted for the dynamic re-
sponse of flexible structures in waves (Senjanović et al., 2008). This
method contains three steps: (1) Evaluation of the natural oscillation
modes of the flexible structure; (2) hydrodynamic analysis for each
mode and (3) Superposition of all modes together and solution of the
coupled modal equation to obtain the hydroelastic response of the
flexible structure.

Unlike the traditional mode superposition approach, Lu et al. (2016)
proposed a discrete-module-beam-bending based hydroelasticity
method. The underlying idea is outlined as follow. First, a continuous
flexible structure is discretised into several rigid submodules. Multi-
rigid-body hydrodynamics is adopted to obtain the hydrodynamic
forces (wave excitation force, added mass force and radiation damping
force) on each rigid submodule, which, together with the hydrostatic
force and inertia force, comprises the total external force on each
submodule. Then each submodule is simplified as a lumped mass at its
center of gravity and adjacent lumped masses are connected by a beam
element to account for effects of structural deformation. Finally, the
equations of motion for a flexible structure in waves are established by
considering the equilibrium of total external forces and structural

deformation induced forces on each lumped mass. Some recent re-
searches on application of this hydroelasticity method can refer to Sun
et al. (2018), Wei et al. (2017), Xu et al. (2017), Zhang et al. (2018a,
2018b).

The flexible structures investigated in the above-mentioned re-
searches have simple shapes with unchanged cross section in the
longitudinal direction (a rectangular plate in Sun et al. (2018), Wei
et al. (2017), Xu et al. (2017) and Zhang et al. (2018b). And an elliptic
cylinder in Zhang et al. (2018a)). Thus for each beam element added
between two adjacent lumped masses, an analytical stiffness matrix
exists (see Appendix A). However, in reality, large ships or very large
floating structures may have complicated geometric features and thus
no analytical stiffness matrix exists for the beam element.

The aim of the present study is to extend the discrete-module-beam-
bending-based hydroelasticity method proposed by Lu et al. (2016) to
be applicable for a flexible structure with complex geometric features
with the aid of finite element method. An outline of the underlying idea
for the extension is given and some validations are provided.

2. Extension of the discrete-module-beam-bending based
hydroelasticity method

2.1. Revisitation of the hydroelasticity method

The discrete-module-beam-bending-based hydroelasticity method
proposed by Lu et al. (2016) is revisited here. For Lu's hydroelasticity
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method, a linear hydrodynamic approach is used and the solution is
obtained in frequency domain. As shown in Fig. 1, a continuous flexible
structure is first discretised into N rigid submodules. Then multi-rigid-
body hydrodynamics theory can be used to obtain the wave excitation
force FE , added mass force = ω ωF A ξ( )A

2 , radiation damping force
= iω ωF B ξ( )Rd for all submodules. Here, ω is the wave frequency; ξ is

the total displacement vector at the center of each submodule with the
dimension 6N×1 (each submodule has 6 degrees of freedom); ωA( ) and

ωB( ) are the added mass and radiation damping, respectively (with the
dimension 6N×6N). The hydrostatic restoring force is = −F CξHs with
C(whose dimension is 6N×6N) being the hydrostatic restoring coeffi-
cients. The inertia force of all submodules is = ωF MξIn

2 , where
M(whose dimension is 6N×6N) is the mass matrix. The hydrodynamic
formulations related to the calculation of the above-mentioned forces
can be referred to Lu et al. (2016) and Zhang et al. (2018b).

The total external force exerted on the center of all submodules is

= + + + +F F F F F FT E A Rd In Hs (1)

Subsequently, each submodule is simplified as a lumped mass at its
center of gravity. And the adjacent lumped masses are connected by a
beam element, the geometrical and physical properties of which are
derived from the flexible structure. The force on lumped masses caused
by structural deformation is = −F K ξSt St , where KSt(6N×6N) is the
stiffness matrix of the entire structure and it is given by overlaying the
beam element stiffness matrix KE according to the standard process of
finite element method. More details can be referred to Zhang et al.
(2018a, 2018b).

Finally, the equations of motion of a flexible structure in waves are
established in frequency domain by considering the equilibrium of
forces for each lumped mass,

− + − + + =ω ω iω ωM A B C K ξ F{ ( ( )) ( ) ( )} E
2

St (2)

By solving Eq. (2), the displacement at the center of gravity of each
submodule is obtained. Then the beam bending theory can be applied to
solve the structural deflection, shear force and bending moment.

2.2. Extension of the hydroelasticity method

If the flexible structure has a simple shape, an analytical expression
of the beam element stiffness matrix KE(the dimension is 12×12) can be
given. For example, for a uniform beam element with a rectangular
cross section, the expression of KE is given in Appendix A. However, for
a flexible structure with complex geometric features, we can never
obtain such an analytical expression for the beam element stiffness
matrix. As a result, the finite element approach will be adopted to ex-
tend the present hydroelasticity method. When it comes to the finite
element approach, we mean that the beam between two adjacent
lumped masses is discretised into a large number of small elements (a
standard discretization process used in the finite element analysis).

We consider a beam element with arbitrary shape of cross section
and varied geometric features along the longitudinal direction shown in
Fig. 2. This beam element is bounded by the center of gravity of the ith
and jth submodules. The extension of the approach actually includes
two steps: (1) to represent the physical variables (displacement and
forces) of all the nodes of the beam element by the physical variables of
nodes on the cross section of the beam element; and (2) to represent the
physical variables of nodes on the cross section by the ones at the center
of cross section of the beam element.

The finite element method (FEM) is applied to the beam element for
calculation of the overall stiffness of the structure. Suppose that the
beam element is discretised into a number of small elements with the
number of nodes n. Each node has three components of displacement

and force, which is defined as ⎜ ⎟= ⎛
⎝
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where the spatial stiffness matrix ∗K can be obtained using the software
ANSYS (2013).

In Eq. (3), the nodes are spatially distributed within the beam ele-
ment. This means that there are nodes both on the two end cross sec-
tions of the beam (two cross sections where the centers i and j are lo-
cated) and in the inner space of the beam. So the first step is to
represent the physical variables (i.e. displacements and forces) of all the
nodes of the beam element by the physical variables of nodes on two
end cross sections of the beam element, i.e. to establish the stiffness
matrix of the nodes on two end cross sections, KB

* . This process is quite
similar to the static condensation process in finite element method
(Wilson, 1974). Eq. (3) can be modified as

Fig. 1. Schematic of the discrete-module-beam-bending based hydroelasticity method.

Fig. 2. A beam element with arbitrary shape of cross section and varied geo-
metric features along the longitudinal direction.
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