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A B S T R A C T

Different from the traditional time-domain methods, which usually employ a step-by-step procedure for response
estimation of structures with non-zero initial conditions, a new time-domain response estimation method is
proposed by using separated residues corresponding to original external loadings and non-zero initial conditions,
to provide a more efficient algorithm for offshore structures with non-zero initial conditions. The key of the
proposed method is that responses of the system are divided into three contributions in the Laplace domain: the
first comes from the original external loadings, the second from the initial displacements, and the last from a
simultaneous combination of initial displacements and velocities. One theoretical development of the proposed
method is that these three parts are all represented by separated residues that can be estimated by using the
state-space model, which is also the actual reason why each part of the Laplace-domain responses of the system
can be easily transformed back to the time domain in terms of the inverse Laplace transform. Compared with the
traditional time-domain methods, responses from the proposed method are directly estimated by utilizing the
inverse Laplace transform, which implies that estimated time-domain responses will be continuous in the time
domain, so more accurate results can be expected. In addition, the proposed method avoids the procedure of a
step-by-step estimation; therefore, better computational efficiency can also be predicted. Three numerical ex-
amples and one experiment are used to investigate the performance of the proposed method: the first is a single-
degree-of-freedom (SDOF) system to illustrate the procedure, the second is a six-DOF system aiming at extending
the proposed method to multiple-DOF (MDOF) systems, and the last is a typically studied engineering structure,
i.e., a beam model, to show the potential engineering applications of the proposed method. Numerical results
show that the proposed method not only can provide much more accurate time-domain responses compared with
those from the traditional time-domain methods, even when the time step used is not so accurate, but also has
better computational efficiency, e.g., in the third example, the traditional time-domain method takes 172.39 s
during the estimation of responses with 10 s, while the proposed method takes only 13.01 s. Finally, an ex-
perimental fixed offshore platform conducted at the lab of Ocean University of China is used to demonstrate the
proposed method.

1. Introduction

In mathematics and particularly in dynamic systems, an initial
condition is usually defined as a value of an evolving variable at the
initial time (typically denoted as t= 0) (Baumol, 1970). To carry out
the design of structures subjected to dynamic loads, dynamic responses
of the system are usually estimated under the assumption that the
structure is initially at rest by employing either time domain or

transformed domain methodologies (Clough and Penzien, 1993; Paz,
1997). However, the state of non-zero conditions is typically treated as
fact for dynamic analysis of in-service structures, such as structural
health monitoring or fluid-structure interaction analysis of structures.

Mathematically, the dynamic behavior of a system can be re-
presented by a set of simultaneous second-order linear ordinary dif-
ferential equations. For distributed dynamic systems, an appropriate
discretization process, such as the finite element method, can be used to
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represent them via discrete dynamic system models. In both differential
equations in continuous time and difference equations in discrete time,
initial conditions affect the value of the dynamic variables (state vari-
ables) at any future time. When the initial conditions of a system are
non-zero, which are traditionally solved in the time domain based on a
step-by-step numerical integration procedure, such as Central
Differences, Newmark, Wilson theta, etc. (Bathe, 1996). But the re-
quired time-step resolution should be carefully determined and usually
depends on the desired level of solution precision (Craig and Kurdila,
2006). During the determination of the time increment, which is often
called the time interval, three factors must be considered: (1) the rate of
variation of the applied loading, (2) the complexity of the nonlinear
damping and stiffness properties, and (3) the period of vibration of the
structure. In general, the time interval must be short enough to permit
reliable representation of all these factors, which also means that reli-
able results can be achieved only when a proper time interval is used.
Currently, there is a great deal of commercial software available based
on time-domain approaches, including a great variety of strategies for
linear and non-linear analysis, and there are excellent pre- and post-
processing modules that enormously simplify the daily design activities;
reviews of more recent developments can be found in Chung and Lee
(1994)and Hulbert and Chung (1996), where developments regarding
the optimization of numerical dissipation are presented. However, one
serious limitation of time-domain methods is that, if a very short time
interval is used, it may be difficult to obtain reasonable computational
efficiency, especially while evaluating a lengthy response with small
time steps and large numbers of degrees of freedom.

Non-zero initial conditions are seldom considered in the frequency
domain by using traditional frequency-domain methods, which require
that the loading be resolved into its discrete harmonic components by
Fourier transformation. The corresponding harmonic response compo-
nents are then obtained by multiplying these loading components by
the frequency response function of the structure, and finally the total
response of the structure is obtained by implementing the inverse
Fourier transform. However, a major limitation of frequency-domain
methods is that the computed response is a steady-state response, i.e., a
response assuming that the initial conditions are all zero. By taking into
account the initial conditions, Veletsos and Ventura (Veletsos and
Ventura, 1984, 1985) introduced a discrete Fourier transform (DFT)-
based procedure for calculating the transient response of a linear single
degree-of-freedom (SDOF) system from its corresponding steady-state
response to a periodic extension of the excitation. The procedure in-
volves the superposition of a corrective, free-vibration solution that
effectively transforms the steady-state response to the desired transient
response. However, it requires the computation of the problem time-

domain Green¡¯s function from known frequency-domain matrix
transfer functions. Mansur et al. (Mansur et al., 2000; 2004) used the
pseudo-force concept by taking into account the non-zero initial con-
ditions in the DFT-based frequency-domain analysis of continuous
media discretized by the finite element method (FEM), in modal co-
ordinates or in both nodal and modal coordinates. In many cases,
however, frequency-domain approaches are adequate, e.g., when the
physical properties are frequency-dependent, when design requires the
use of spectra, etc. Recently, Liu et al. (Liu et al., 2015; 2016, 2017)
proposed a new frequency-domain method that can consider non-zero
initial conditions. However, the early time steps of estimated responses
always have some errors, because of the use of the inverse Fourier
transform (IFT).

Besides frequency- and time-domain methods, dynamic responses of
a system can also be solved in the Laplace domain, which solves second-
order linear ordinary differential equations using the Laplace transform
and normally consists of three steps: (1) the given ordinary differential
equation is transformed into an algebraic equation, called the sub-
sidiary equation, in the Laplace domain (Polking et al., 2006); (2) the
subsidiary equation is solved by purely algebraic manipulations; and
(3) the solution in Step 2 is transformed back, resulting in the solution
of the given problem. The Laplace transform method is particularly
useful if the forward and inverse transforms can be found directly in a
table of Laplace transforms or can be converted to forms that can be
obtained by the table lookup. Thus, traditional Laplace methods have
been limited to analytical operations for simple forms of input func-
tions. Hu and Liu (Hu et al., 2016) recently developed an efficient pole-
residue method to numerically compute dynamic responses of multiple-
DOF (MDOF) systems to arbitrary loadings; the key concept and de-
velopment is regarding how to compute the poles and residues of the
output from those of the input and system transfer functions, and the
accuracy of the new method, in theory, is higher than that of any time-
domain approach. The limitation of reference (Hu et al., 2016) is based
on the assumption that the system is initially at rest, i.e., only zero-
valued initial conditions can be handled.

This paper aims to develop a new time-domain response estimation
method for structures with non-zero initial conditions. Specifically, we
expect that estimated responses from the proposed method are not
limited to the chosen time interval, and that the proposed method has
better computational efficiency. To demonstrate and investigate the
performance of the proposed method, three numerical examples and
one experiment are going to be employed: the first is a SDOF system to
illustrate the procedure, the second is a six-DOF system to extend the
proposed method from SDOF to MDOF systems, and the last is a 15-
element cantilever beam to show the potential applications of the

Nomenclature

ar , br The r diagonal values of �Θ ΘT and �Θ ΘT

C, Cq p, Damping matrix and its submatrix by deleting
the p th row and the q column

D s( ) Determinant of a matrix
tf( ) Original external loading in time domain

H s( ) Transfer function
K, Kq p, Stiffness matrix and its submatrix by deleting the

p th row and the q column
M, Mq p, Mass matrix and its submatrix by deleting the p

th row and the q column
Np Number of components of an external loading
x, ẋ , ẍ Displacement, velocity and acceleration of a

system
x0, ẋ0 Non-zero initial displacements and velocities

sX ( )f , sX ( )d , sX ( )h Contributions of the external loadings, the s term
and the hybrid term respectively

T Transpose operator
β, γ The Newmark integration parameters
βl

f , βl
s, βl

h Residues of the system, the s term and the hybrid
term, respectively

= =η η ηl
h

l
s

l
f Poles of the system

θr , ζr The r th eigenvector and damping factor
∗ The conjugate of a vector
s The Laplace variable

tΔ Time interval
Θ Modal matrix with the state eigenvectors
λn The n th pole of the external loading
� The operator of the Laplace transform
σq

h The q th element of +Mx Cx˙ (0) (0)
τt

h, τt
f Zeros of the hybrid term and the transfer func-

tion, respectively
ωr , ωdr The r th natural and damped frequencies
νn, χn Poles and residues of Laplace responses caused

by external loadings
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