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A B S T R A C T

This paper presents an optimization approach for the nonlinear control of wave energy converters (WECs). The
proposed optimization method also presents the option of optimizing the system nonlinearities, such as those
due to the buoy shape, such that the harvested energy is maximized. For the sake of control design, the control
force and the system optimizable nonlinear force, each is expressed as a truncated power series function of the
system states. The power series coefficients in both the control and system forces are optimized. A hidden genes
genetic algorithm is used for optimization. The optimized system's nonlinear force is assumed to drive the design
of the WEC. The numerical test cases presented in this paper show that it is possible to attain multiple fold higher
harvested energy when using nonlinear control optimization. The advantage of being able to optimize the WEC
design simultaneously with the control is the potential of harvesting this multiple fold higher energy without
causing large WEC motion and with less dependence on reactive power. While this paper focuses on the opti-
mization part of the problem, the implementation of the obtained control in realtime is discussed at the end of
the paper.

1. Introduction

One of the challenges in wave energy harvesting is the buoy motion
control. There has been significant developments on different control
methods for wave energy converters (WECs) (Falnes, 2007). Most stu-
dies on the control of one-degree-of-freedom heaving WECs adopt a
linear dynamic model (the Cummins' equation (Cummins)) which can
be written as:

+ = + − − +∞m a z f u B z kz f( ) ¨ ˙͠ ex v r (1)

where z is the heave displacement, m is the buoy mass, k is the hy-
drostatic stiffness due to buoyancy, ∞a͠ is the added mass at infinite, fex
is the excitation force, u is the control force, Bv is a viscous damping
coefficient, and fr is the radiation damping force. The buoyancy stiff-
ness term is called the hydrostatic force. This is linear model is usually
implemented using boundary element methods (BEM) that assume
small motions around the mean position.

There are, however, multiple sources of possible nonlinearities in
the WEC dynamic model (Wolgamot and Fitzgerald, 2015). For ex-
ample, if the buoy shape is not a vertical cylinder near the water surface
then the hydrostatic force will be nonlinear. The coupling between the
heave and pitch modes in a point absorber is nonlinear (Villegas and
van der Schaaf, 2011; Zou et al., 2017). The hydrodynamic forces can
also be nonlinear in the case of large motion (Giorgi et al., 2016).
Control strategies that aim at maximizing the harvested energy usually

increase the motion amplitude and hence the impact of these non-
linearities increases. Reference (Giorgi et al., 2016) presents a numer-
ical analysis for the nonlinear hydrodynamic forces at different levels
from a full nonlinear model using computational fluid dynamics (CFD)
tools, to linear models corrected by the nonlinear Froude-Krylov force
as well as nonlinear viscous and hydrostatic forces. The power take off
(PTO) unit may have nonlinearities as well (Bacelli et al., 2015). Re-
ference (Retes et al., 2015a) points out that different WEC systems
should choose only the relevant nonlinear effects to avoid unnecessary
computational costs. For example, in the case of heaving point absor-
bers the nonlinear Froude-Krylov force is essential while the nonlinear
diffraction and radiation can be neglected; the nonlinear viscous effects
are weak as well for point absorbers (Retes et al., 2015a). The nonlinear
PTO and mooring effects seem to be significant. In fact references
(Merigaud et al; Retes et al., 2015b) focus on the nonlinear Frou-
deKrylov forces and show that they are the dominant nonlinearities in
the case of a heaving point absorber with nonuniform cross sectional
area.

Reference (Giorgi, 2017) discusses representative linear models that
provide an average model over the full operational space; these models
are more accurate than the linear models in the cases of large motions.
Yet, due to the average nature of these representative models, they may
not be very useful in controlling a WEC in large motion. Linearizing the
WEC motion about an operation point is also not always feasible due to
the fact that ocean waves change characteristic continuously, and hence
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there is no single operation point. Reference (Penalba et al., 2017)
points out that for WEC control in the case of large motions, nonlinear
models are inevitable.

Reference (Giorgi and Ringwood, 2016) presents a computationally
efficient way of computing the static and dynamic nonlinear Froude-
Krylov forces. Two methods are presented in (Giorgi and Ringwood,
2016). The first method assumes that the wave length is considerably
longer than the characteristic length of the device and hence ignores the
dependance of the pressure (on the buoy surface) on the surge co-
ordinate. The second method uses a McLaurin expansion to simplify the
force integral calculation. The latter method was demonstrated to be
more accurate for various sea states.

Most of the studies described above consider the modeling of dif-
ferent nonlinearities of a given WEC, and use the relevant ones in
modeling the system. Reference (Giorgi and Ringwood, 2016) found
that the harvested energy of the nonlinear WEC is less than that of the
linear system, when using a latching control (Babarit et al., 2004;
Durand et al; Clément and Babarit, 1959). Nonlinear systems, however,
possess some characteristics that can be exploited for higher harvested
energy as pointed out in (Nayfeh and Mook, 2008; Robinett and Wilson,
2011). This paper addresses the nonlinear one-degree-of-freedom
heaving WEC from a different prospective. The goal here is not to model
the nonlinearities in the system. Rather, the goal is to increase the
harvested energy of the nonlinear WEC compared to the linear one. One
way to increase the harvested energy of a nonlinear WEC is to design a
controller for the nonlinear WEC; in other words the control optimi-
zation process should take into account the nonlinearities in the WEC,
allowing the control force to be nonlinear function of the system states.
The energy can be further increased if, in addition to optimizing the
control, we optimize the system nonlinearities simultaneously with the
control. The nonlinear FroudeKrylov force, for instance, is dictated by
the buoy shape; hence the buoy shape can be optimized along with the
control to maximize the energy. The FroudeKrylov force is one source of
the system nonlinearities. In this paper, the hydrodynamic and hydro-
static (hydro) forces along with all other optimizable nonlinear forces
are referred to as the system nonlinearities. The system nonlinearities
and the control (also nonlinear) are here optimized simultaneously. For
the sake of control design, it is convenient to express the optimizable
system nonlinearities as a series function as follows:
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where f͠s is the nonlinear force, αsi and βsi are constant coefficients, ∀ i;
Ns and Ms are the number of nonlinear terms that determine the order of
the nonlinear forces. Eq. (2) is written intuitively; consider for example
the Proportional-Derivative (PD) controls which are widely used in
linear systems. In a PD control, the proportional part is constructed as
linear term in the state, and the derivative term is constructed as a
linear term in the state derivative. The proportional term is a stiffness
term since it has spring-like effect, which means this part of the force
does not add/remove energy on average. The derivative term, however,
is a damper-like term, and it continuously adds/removes power. One
might think of nonlinear stiffness or damping terms, as discussed in
details in several references such as (Nayfeh and Mook, 2008). The first
term in f͠s represents a nonlinear stiffness force, and the second term
contains a nonlinear damping force. Note that all βsj are always nega-
tive coefficients, and hence the second term is always a damping term
(energy flow is always from the water to the device). Optimizing the
system nonlinearities means in this case finding the optimal coefficients
αsi and βsi. Once the control and f͠s are optimized, the WEC system (e.g.
the buoy shape) is designed so that the WEC nonlinear force matches
the optimized nonlinear force f͠s . This last step of designing a WEC
system to generate a prescribed nonlinear force is not addressed in this
paper; the focus of this paper is on the optimization of f͠s and the
control. Section 4.3, however, presents a numerical case study for

demonstration of optimizing both the control and the buoy shape si-
multaneously. The cases when the optimized f͠s cannot be realized will
also be discussed in Section 6. Also the case when there are nonlinear
forces in the system that are not optimizable is addressed in Section 6.

2. Dynamic model of the nonlinear WEC system

This section presents the dynamic model that will be used to ap-
proximate a nonlinear WEC, for the purpose of control design. The
nonlinearities in the dynamic model could be because of the buoy
shape, the large buoy motions, and/or the PTO. To model a nonlinear
WEC, we start with a linear approximation that has a buoy of height h.
This is here referred to as the baseline model. To simplify the pre-
sentation we start by assuming a regular wave, then the work is ex-
tended to irregular waves in Section 5. For the case of a linear WEC in a
regular wave, the radiation force reduces to a linear damping and an
added mass term. The equation of motion in Eq. (1) then becomes:

+ + + + = +m a z c B z kz f u( ) ¨ ( ) ˙͠ v ex (3)

where c is the radiation damping coefficient, and a͠ is the added mass at
the excitation frequency. The excitation force in this case can be written
as:

= +f f cos t ϕˆ (Ω )ex (4)

where Ω is the excitation force frequency, f̂ is the amplitude of ex-
citation force, and ϕ is the phase of excitation force.

Now consider the case of a nonlinear WEC in which the additional
nonlinear force, compared to the baseline model in Eq. (3), is f͠s . The
nonlinear force f͠s is expressed as in Eq. (2). The control force is ex-
pressed as a summation of two quantities = +u u u͠l c, where ul is the
linear part of the control, and u͠c is the nonlinear control part which is
assumed in the form:
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where αci , βci are constant coefficients, ∀ i; Nc and Mc are the number of
nonlinear terms that determine the order of control forces. The equa-
tion of motion of the system then is:

+ + + = + + + +∞m a z B z kz f f u u f( ) ¨ ˙͠ ͠ ͠v ex r l c s (6)

The equation of motion, Eq. (6), is derived assuming that the buoy
does not leave the water nor gets fully submerged in the water. In the
case of nonlinear WECs presented in this paper, the motion of the buoy
may grow large and these two cases should not be excluded. Hence the
model in Eq. (6) is modified as follows. Consider the coordinates de-
fined in Fig. 1, a range <z zs is defined in which the model in Eq. (6) is
considered valid. The limit zs is selected based on the buoy dimensions
and the wave height. When >z zs, there are two possible cases. The
first case is when ( >z 0), that is the buoy is (or very close to being)
fully submerged under water. The second case is when ( <z 0), that is
the buoy is (or very close to being) totally out of the water. In these two
cases, the dynamic model in Eq. (6) is not valid, and an approximate
dynamic model is defined as follows:

Case 1: ( >z 0) The linear stiffness term becomes a constant kh/2.

Fig. 1. Buoy coordinate system.
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