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a b s t r a c t

Sobol' index is a prominent methodology in global sensitivity analysis. This paper aims to directly esti-
mate the Sobol' index based only on available input–output samples, even if the underlying model is
unavailable. For this purpose, a new method to calculate the first-order Sobol' index is proposed. The
innovation is that the conditional variance and mean in the formula of the first-order index are calcu-
lated at an unknown but existing location of model inputs, instead of an explicit user-defined location.
The proposed method is modularized in two aspects: 1) index calculations for different model inputs are
separate and use the same set of samples; and 2) model input sampling, model evaluation, and index
calculation are separate. Due to this modularization, the proposed method is capable to compute the
first-order index if only input–output samples are available but the underlying model is unavailable, and
its computational cost is not proportional to the dimension of the model inputs. In addition, the pro-
posed method can also estimate the first-order index with correlated model inputs. Considering that the
first-order index is a desired metric to rank model inputs but current methods can only handle inde-
pendent model inputs, the proposed method contributes to fill this gap.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Uncertainty propagation problems generally involve a computa-
tional model in the form of y¼ f ðx;dÞ where x¼ fx1;…; xkg is the
vector of stochastic model inputs and d is the vector of deterministic
inputs. Global sensitivity analysis (GSA) studies how the uncertainty in
the output y can be apportioned to the uncertainty in the stochastic
model inputs x¼ fx1;…; xkg, so that the importance of each stochastic
model input can be ranked. Based on the result of GSA, inputs with
negligible contribution can be fixed at their mean values thus redu-
cing the number of stochastic variables. Reviews on various GSA
methods can be found in [1,2]. The Sobol' sensitivity indices method
based on variance decomposition is a prominent one among these
methods. Usage of the Sobol' indices in different engineering pro-
blems can be found in [3–7].

Assuming that y¼ f xð Þ is a real integrable function and all the
model inputs x¼ fx1;…; xkg are mutually independent, Sobol' [8]

proved the following formula to decompose the variance of y:

V yð Þ ¼
Xk
i

Viþ
Xk
i1 ¼ 1
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Vi1i2 i3 þ…þV12…k ð1Þ

where Vi indicates the variance of y caused by xi individually, and
Vi1…is sZ2ð Þ indicates the variance of y caused by the interaction of
xi1 ;…; xis
� �

.
Dividing V yð Þ at both sides of Eq. (1) for normalization, the

Sobol' index is defined as:

1¼
Xk
i

Siþ
Xk
i1 ¼ 1

Xk
i2 ¼ i1 þ1

Si1 i2

þ
Xk
i1 ¼ 1

Xk
i2 ¼ i1 þ1

Xk
i3 ¼ i2 þ1

Si1i2 i3 þ…þS12…k ð2Þ

where the index Si measures the contribution of xi alone to the
variance of y, without interacting with any other inputs. Si is called
first-order index or main effects index. Other indices Si1…is sZ2ð Þ in
Eq. (2) are higher-order indices, measuring the contribution of the
interaction of xi1 ;…; xis

� �
.
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This paper focuses on calculating the first-order index Si, which
is one of the important objectives in variance-based global sensi-
tivity analysis. The calculation of Si is based on the following for-
mula:

Si ¼
Vi

V yð Þ ¼
Vxi Ex� i yjxið Þ� �

V yð Þ ð3Þ

where x� i means all the model inputs other than xi.
Based on Eq. (3), computing Si analytically is nontrivial, since Ex� i

∙ð Þ in Eq. (3) indicates a multi-dimensional integral. Computing Si by
Monte Carlo simulation (MCS) directly is also expensive. The
numerator in Eq. (3) leads to a double-loop MCS [1]: the inner loop
Ex� i yjxið Þ computes the mean value of y using n1 random samples of
x� i; and the outer loop computes Vxi Ex� i yjxið Þ� �

by iterating the inner
loop n2 times at different values of xi. In addition, another n3 MCS
iterations are required to compute V yð Þ in Eq. (3). The cost of this
sample-based method, defined as the total number of model evalua-
tions to compute all Si i¼ 1to kð Þ, is kn2

dlþndl if n1 ¼ n2 ¼ n3 ¼ ndl.This
cost increases with ndl and k, and is unaffordable if a single model
evaluation is time-consuming or economically expensive, since ndl is
often of the order greater than 1000 in many practical applications.

Various algorithms have been proposed to reduce the computa-
tional cost of the Sobol' indices. These algorithms can be categorized
into analytical methods and sample-based methods. In the analytical
methods, the original model y¼ f ðxÞ is generally approximated by
some surrogate model of special form, so that the multi-dimensional
integral can be converted into multiple univariate integrals, which can
be easily calculated analytically or numerically. Zhang and Pandey [9]
approximated the original model y¼ f xð Þ by a multiplication of uni-
variate functions; then the univariate integral was calculated by
Gaussian quadrature. Sudret [10] proposed that if the original model is
approximated by a polynomial chaos expansion (PCE), the Sobol’
index can be calculated by post-processing the PCE coefficients. Chen
et al. [11] proposed another analytical method for commonly used
surrogate models such as the linear regression model, Gaussian pro-
cess model [12], Gaussian radial basis function model, and MARS
model [13]; and analytical solution of the Sobol' index is available if
the model inputs are normally or uniformly distributed. Analytical
methods reduce the number of model evaluations significantly, but
may require: 1) extra approximations and assumptions, and 2) extra
computational cost in building the surrogate model.

Compared to the analytical methods, sample-based methods
are more widely used [14–18] in engineering due to their simpli-
city in implementation. The basic sample-based method for GSA is
the double-loop MCS, which has been explained earlier and often
has prohibitive computational cost. Various efficient sample-based
methods have been developed in the literature to reduce this cost.
A brief review of these sample-based methods is given in Section
2. To the authors' knowledge, the computational cost (number of
model evaluations) of most sample-based methods is proportional
to the model input dimension k. Therefore the first objective of
this paper is to develop a more efficient sample-based method
whose computational cost is not proportional to k, but much less.

A key assumption of the Sobol’ index is the mutual independence
of model inputs. With correlated model inputs, Eqs. (1) and (2) are no
longer valid. However, Saltelli [19] pointed out that the first-order
index Si is still an informed choice to rank the importance of corre-
lated model inputs, since Si can be defined in another way where
independent model inputs are not assumed:

1. The importance of xi at a particular location ̃xi can be measured
by Vx� i yxi ¼ ~xið Þ, i.e., smaller Vx� i yxi ¼ ~xið Þ indicates greater
importance of xi;

2. The dependence of this measurement on the location of xi is
removed by taking the average of Vx� i yxi ¼ ~xið Þ, i.e. Exi Vx� i yxið Þ� �

;

3. By the law of total variance V yð Þ ¼ Exi Vx� i yxið Þ� �þVxi Ex� i yxið Þ� �
,

a larger Vxi Ex� i yxið Þ� �
equally indicates a greater importance of

xi;
4. The first-order index is redefined by normalization, thus

Si ¼ Vxi Ex� i yxið Þ� �
=V yð Þ.

Saltelli's paper [20] in 2002 mentioned that there is no alter-
native to the expensive double-loop MCS to compute Si with cor-
related model inputs. The authors have not found any efficient
algorithm in more recent studies, either. Thus the second objective
of this paper is to develop an efficient algorithm that can handle
correlated model inputs.

The outline of this paper is as follows. Section 2 briefly reviews
existing sample-based methods for GSA, and discusses their compu-
tational cost. Section 3 illustrates the proposed modularized sample-
based method that reduces the computational cost and handles cor-
related model inputs. Section 4 uses three numerical examples to
compare the proposed method with existing methods.

2. Background: sample-based methods to estimate the first-
order Sobol’ index

2.1. Sobol' scheme

Consider a real integrable function y¼ f xð Þ where x¼
x1;…; xk
� �

is the vector of independent model inputs. Denote z¼
z1;…; zk
� �

as the vector of the same independent model inputs,
i.e., ziði¼ 1tokÞ and xi are independently and identically distributed
(i.i.d.). Sobol' [8] developed the following formula to compute the
first-order index:

Vi ¼
Z

f xð Þf xi; z� ið Þp xð Þp z� ið Þdxdz� i�E2 yð Þ ð4Þ

where p ∙ð Þ denotes the joint probability density function (PDF) of
all the arguments, and it is the product of the PDFs of individual
arguments under the assumption of independent model inputs.
z� i are all the variables in z other than zi.

Eq. (4) leads to the following estimator of Vi:

Vi ¼
1
n

Xn
j ¼ 1

f x j
� �

f x j
i ; z

j
� i

� �
� 1

n

Xn
j ¼ 1

f x j
� �2

4
3
5
2

ð5Þ

Eq. (5) requires ns samples of x and ns samples of z, which are
sampled independently from the distributions of the model inputs.
In Eq. (5), the superscript j is the index of the samples and the
subscript i is the index of model inputs. For example, x j means the
j-th sample of x, and z j

� i means the j-th sample ofz except zi. In Eq.

(5), f x j
� �

implies ns model evaluations; f x j
i ; z

j
� i

� �
implies ns model

evaluations for each model input, i.e., kns evaluations for all the
model inputs. To improve the accuracy, generally another ns model
evaluations are needed over the samples in z, and the results are
used to estimate V yð Þ together with earlier evaluations over x. The
first-order index is calculated as Si ¼ Vi=V yð Þ. The overall cost for
all the first-order indices is knsþ2ns.

Eq. (5) is the first efficient sample-based method to compute
the first-order Sobol’ index. Several methods have been proposed
to improve its accuracy or reduce computational cost. Homma and
Saltelli [21] suggested a more accurate estimator of Vi by using
1
n

Pn
j ¼ 1 f x j

� �
f z j
� �

to calculate E2 Yð Þ instead of 1
n

Pn
j ¼ 1 f x j

� �h i2
.

Thus Eq. (5) becomes [22]:

Vi ¼
1
n

Xn
j ¼ 1

f x j
� �

f x j
i ; z

j
� i

� �
� f z j
� �h i

ð6Þ

Compared to Eq. (5), Eq. (6) brings no extra model evaluation.
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