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a b s t r a c t

System management includes the selection of maintenance actions depending on the available obser-
vations: when a system is made up by components known to be similar, data collected on one is also
relevant for the management of others. This is typically the case of wind farms, which are made up by
similar turbines. Optimal management of wind farms is an important task due to high cost of turbines'
operation and maintenance: in this context, we recently proposed a method for planning and learning at
system-level, called PLUS, built upon the Partially Observable Markov Decision Process (POMDP) fra-
mework, which treats transition and emission probabilities as random variables, and is therefore suitable
for including model uncertainty. PLUS models the components as independent or identical. In this paper,
we extend that formulation, allowing for a weaker similarity among components. The proposed
approach, called Multiple Uncertain POMDP (MU-POMDP), models the components as POMDPs, and
assumes the corresponding parameters as dependent random variables. Through this framework, we can
calibrate specific degradation and emission models for each component while, at the same time, process
observations at system-level. We compare the performance of the proposed MU-POMDP with PLUS, and
discuss its potential and computational complexity.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction and previous works

Infrastructure systems age and their condition deteriorate due
to fatigue and environmental loads. Accurate risk analysis is crucial
to extend their life-span, and to guide decision making towards a
sustainable use of resources. This analysis should be conducted in
a probabilistic framework, modeling the degradation process and
incorporating the effect of the maintenance actions. Wind farms
are one of the many type of infrastructures that is recently
growing due to the need for sustainable renewable energy. On
average, operation and maintenance (O&M) costs account for
about 25–30% of the overall expenses for wind energy generation
[1]; however, a careful optimization process can reduce those costs
and make wind sector more competitive with other renewable
sources. Specifically, the wind energy infrastructure is exposed to
fast deterioration, and requires frequent maintenance. However, a
large amount of data related to system deterioration and

performance is available, and allows for an improvement of the
O&M process. An accurate, efficient and reliable framework to
optimally manage wind farms includes selecting appropriate
actions to balance between exploration of the degradation beha-
vior and a profitable exploitation, integrating information on
components (i.e. the turbines) at the level of the system (i.e.
the farm).

Methods based on Markov Decision Processes (MDP) have been
used for O&M of infrastructures systems both at component and
system level [2–6]. A Partially Observable Markov Decision Process
(POMDP) is a generalization of the MDP [7,8], where the exact
state of a component cannot be observed directly, but can only be
inferred by indirect observations. Time is discretized in steps and
the goal is, at each step, to select a maintenance action to max-
imize the “value” i.e. the sum of discounted expected rewards over
the infinite horizon. The POMDP framework has been used in
recent years for optimal management of wind farms [9–11]. Spe-
cifically, Byon et al. [9] have developed a method accounting for
uncertain weather conditions in the maintenance strategy, and
they have extended their original method to season-dependent
condition-based maintenance [10]. Nielsen and Sorensen [11] have
investigated the use of limited-information influence diagrams to
support decision making for O&M of offshore turbines. McMillan
and Ault [12] have evaluated the effect of adopting MDP in
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modeling the deterioration of turbines, using Monte Carlo simu-
lations to assess the cost effectiveness of condition-based
monitoring.

A limit in this scientific literature is that the transition prob-
abilities (modeling the degradation behavior of the turbines) and
emission probabilities (modeling the precision of the monitoring
system) are assumed as fixed values, and epistemic uncertainty is
not taken into account. However, in most real-world management
of infrastructure systems, high uncertainty may affect these
parameters.

Recent works such as that of Ross et al. [13] have generalized
the POMDP framework to Bayes-Adaptive POMDP (BA-POMDP)
that allows treatment of the model parameters as random vari-
ables, whose distribution can be learned and updated during the
decision process. However, the computational complexity of this
framework is high and it becomes easily intractable with increase
in the time horizon or dimensionality (i.e. number of states,
observations, and actions). Jaulmes et al. [14,15] have proposed an
algorithm called “MEDUSA” (Markovian Exploration with Decision
based on the Use of Sampled models Algorithm) to approximately
identify the optimal policy when the model is unknown: their
algorithm updates the model incrementally using selected queries,
while still optimizing the estimate value. Recently, we have pro-
posed an alternative method for approximate learning and plan-
ning, named “PLUS” (Planning and Learning for Uncertain
Dynamic Systems) [16,17], which performs better than the pre-
vious method, in our setting. Specifically, that algorithm can pro-
cess observations, update the distributions of model parameters,
and select the optimal strategy accounting for model uncertainty.
PLUS is structured in two phases: learning and planning. In the
learning phase, it uses Markov Chain Monte Carlo (MCMC) Gibbs
sampling [18], while the planning phase relies on an approxima-
tion which neglects the exploratory value of learning the model
parameters: details about PLUS algorithm can be found in Mem-
arzadeh et al. [17]. The approach allows for a rational treatment of
collected data (e.g. by sensors and visual inspections), a prob-
abilistic tracking of the components' condition, and robust deci-
sion making support. There are two modes of implementing PLUS
at system-level: the first one, which we call Individual PLUS,
assumes that components are completely independent from each
other. The second, that we name Global PLUS, assumes that com-
ponents are modeled by identical stochastic processes.

Still, PLUS cannot model the intermediate case of components
that are known to be similar but not identical. In this paper, we
extend that method by proposing a hierarchical Bayesian model-
ing approach that, at a higher computation cost, is able to model a
system made up by similar components, and allows a system-level
flow of information without forcing the stochastic processes to be
identical. Section 2 describes the problem statement; Section 3
introduces the general MU-POMDP framework and the proposed
method for learning model parameters and hyper-parameters;
Section 4 investigates the performance of the method on a low-
dimensional problem, Section 5 applies it to a wind farm man-
agement problem, and Section 6 draws conclusions.

2. Problem statement

Our motivating application is O&M of a wind farm made by
similar turbines. In that context, the degradation behavior and the
accuracy of the monitoring system are uncertain, but can be assumed
to be similar across components, e.g. because components of differ-
ent typologies are exposed to the same environment, or components
of the same typology are exposed to different environments.

Formally, we define the problem as follow. Suppose to manage
a set of K components, each modeled by a POMDP. The set of

parameters controlling the POMDPs are uncertain and dependent.
In this context, how can we (i) formulate a probabilistic model to
capture the dependence among the components, (ii) develop an
analytical and numerical technique to infer the variables in the
problem, and (iii) define an approach to identify the optimal
management policy? While the limit cases of independent and of
identical models can be solved by Individual and Global PLUS
respectively, the intermediate setting poses specific computational
problems that we address in this paper.

3. Proposed methodology

3.1. MU-POMDP framework

To address the first question posed in previous section, we make
use of the hierarchical Bayesian modeling approach. We refer to the
proposed framework as Multiple Uncertain POMDP (MU-POMDP),
and Fig. 1 shows the corresponding probabilistic graphical model, or
“influence diagram”, for a system with two components (K ¼ 2).
Only variables related to time steps t�1ð Þ and tð Þ are shown in the
figure. The reader is referred to Kaelbling et al. [20] and to [17] for
technical details of the classical POMDP framework which, as
indicated in the figure, is used to model each component. The
graphical model follows the notation of dynamic Bayesian network
and influence diagrams adopted from the textbook of Barber [21]:
circles define random variables, squares decision variables, dia-
monds utility variables, dots fixed parameters, and arrows define
dependence among variables; shaded variables are observed, and a
dashed line indicates that an observation is available before taking
an action. S indicates the component state, A the maintenance
action, Z the available observation and R the monetary loss. Sub-
script “k; t” refers the variable to component k at time t. We assume
all components have the same number of possible states, actions
and observations, and we indicate these quantities as Sjj , Aj

�� and Zjj
respectively. At any time, the manager collects current observations
and select actions for the next time step. Tk indicates the transition
probability of component k, which is a 3-dimensional matrix
defined over the space of current states, actions, and future states
½ S � A � S �

������������ and Ok indicates the corresponding emission prob-
ability, which is a 3-dimensional matrix defined over the space of
states, actions, and observations ½ S � A � Z �

������������ . Transition and
emission probabilities are the “model parameters” and are formally
defined by conditional probabilities, as Tk Sk;t�1;Ak;t�1; Sk;t

� �¼ P
Sk;t Sk;t�1;Ak;t�1;Tk

�� ��
and Ok Sk;t ;Ak;t�1; Zk;t

� �¼ P Zk;t Sk;t ;Ak;t�1;Ok
� �

respectively. They are fixed parameters in the POMDP framework,
and treated as random variables in the BA-POMDP one.

MU-POMDP includes an additional layer of hyper-parameters,
to capture the dependence among the model parameters of dif-
ferent components. Hyper-parameters are marked as αT , βT , αO

and βO in Fig. 1: the first two values define the dependence in the
transitions, while the latter define that of emissions. While model
parameters are different for each component, hyper-parameters
are common to the entire system. Formally, matrices βT and βO
have the same dimension of Tk and Ok respectively, while αT and
αO are scalar variables. The role of these variables will become
apparent in the following sections. Parameter matrices ηT and ηO,
of dimension equal to that of Tk and Ok respectively, and scalar
variables λT and λO define the distribution of hyper-parameters.

3.2. Probabilistic inference via MCMC

The overall purpose of the inference task is to represent the
posterior distribution of the variables in the process. In this context,
the posterior distribution is defined conditional to all observations Z
and actions A observed up to present time. We use the upper bar to
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